Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T03:36:39.940Z Has data issue: false hasContentIssue false

Systematic Search for Lithium Ion Conducting Compounds by Screening of Compositions Combined with Atomistic Simulation

Published online by Cambridge University Press:  05 January 2017

Daniel Mutter
Affiliation:
Freiburg Materials Research Center (FMF), Albert-Ludwigs-Universität Freiburg, Stefan- Meier-Str. 21, 79104 Freiburg, Germany Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, 79108 Freiburg, Germany
Daniel F. Urban
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, 79108 Freiburg, Germany
Christian Elsässer*
Affiliation:
Freiburg Materials Research Center (FMF), Albert-Ludwigs-Universität Freiburg, Stefan- Meier-Str. 21, 79104 Freiburg, Germany Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, 79108 Freiburg, Germany
Get access

Abstract

Replacing liquid by solid state electrolytes has the potential to significantly improve current Li ion batteries concerning performance and safety. The material class NZP, based on the compound NaZr2(PO4)3, exhibits a structural framework suitable for ionic conduction. In this work, a systematic compositional screening and simulation approach, combining classical molecular-dynamics, first-principles calculations, and structural analysis was applied, with which a set of new Li ion conducting NZP compounds could be identified.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Knauth, P., Solid State Ionics 180, 911 (2009).CrossRefGoogle Scholar
Takada, K., Acta Mater. 61, 759 (2013).CrossRefGoogle Scholar
Hagman, L.-O. and Kierkegaard, P., Acta Chem. Scand. 22, 1822 (1968).Google Scholar
Arbi, K., Hoelzel, M., Kuhn, A., García-Alvarado, F., and Sanz, J., Inorg. Chem. 52, 9290 (2013).Google Scholar
Duluard, S., Paillassa, A., Puech, L., Vinatier, P., Turq, V., Rozier, P., Lenormand, P., Taberna, P.L., Simon, P., and Ansart, F., J. Eur. Ceram. Soc. 33, 1145 (2013).CrossRefGoogle Scholar
Pet’kov, V.I. and Orlova, A.I., Inorg. Mater. 39, 1013 (2003).Google Scholar
Lang, B., Ziebarth, B., and Elsässer, C., Chem. Mater. 27, 5040 (2015).Google Scholar
Adams, S. and Rao, R.P., Phys. Status Solidi A 208, 1746 (2011).Google Scholar
Adams, S. and Rao, R.P., J. Mater. Chem. 22, 1426 (2012).CrossRefGoogle Scholar
Adams, S., J. Solid State Electrochem. 14, 1787 (2010).Google Scholar
Adams, S., J. Power Sources 159, 200 (2006).Google Scholar
Brown, I.D., in Bond Valences, edited by Brown, I.D. and Poeppelmeier, K.R. (Springer, Belin, Heidelberg, 2014), pp. 5455.Google Scholar
Gale, J.D. and Rohl, a L., Mol. Simul. 29, 291 (2003).CrossRefGoogle Scholar
García-Muñoz, J.L. and Rodríguez-Carvajal, J., J. Solid State Chem. 115, 324 (1995).Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys. Condens. Matter 21, 395502 (2009).Google Scholar
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
Garrity, K.F., Bennett, J.W., Rabe, K.M., and Vanderbilt, D., Comput. Mater. Sci. 81, 446 (2014).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997).Google Scholar
Monkhorst, H. and Pack, J., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Shannon, R.D., Acta Crystallogr. Sect. A 32, 751 (1976).Google Scholar
Monchak, M., Hupfer, T., Senyshyn, A., Boysen, H., Chernyshov, D., Hansen, T., Schell, K.G., Bucharsky, E.C., Hoffmann, M.J., and Ehrenberg, H., Inorg. Chem. 55, 2941 (2016).Google Scholar