Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T03:31:10.681Z Has data issue: false hasContentIssue false

X-Ray Diffraction and Electron Microscopy Studies of the Size Effects on Pressure-Induced Phase Transitions in CdS Nanocrystals

Published online by Cambridge University Press:  13 April 2020

Lingyao Meng
Affiliation:
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States
Hongyou Fan*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, United States Center for Integrated Nanotechnology, Sandia National Laboratories, Albuquerque, New Mexico, United States
J. Matthew Lane
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States
Luke Baca
Affiliation:
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States
Jackie Tafoya
Affiliation:
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States
Tommy Ao
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States
Brian Stoltzfus
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States
Marcus Knudson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States
Dane Morgan
Affiliation:
Nevada National Security Site, New Mexico Operations-Sandia, Albuquerque, New Mexico, United States
Kevin Austin
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States
Changyong Park
Affiliation:
HPCAT, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, United States
Yang Qin
Affiliation:
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States
*
*(Email: hyfan@unm.edu)
Get access

Abstract

In recent years, investigations of the phase transition behavior of semiconducting nanoparticles under high pressure has attracted increasing attention due to their potential applications in sensors, electronics, and optics. However, current understanding of how the size of nanoparticles influences this pressure-dependent property is somewhat lacking. In particular, phase behaviors of semiconducting CdS nanoparticles under high pressure have not been extensively reported. Therefore, in this work, CdS nanoparticles of different sizes are used as a model system to investigate particle size effects on high-pressure-induced phase transition behaviors. In particular, 7.5, 10.6, and 39.7 nm spherical CdS nanoparticles are synthesized and subjected to controlled high pressures up to 15 GPa in a diamond anvil cell. Analysis of all three nanoparticles using in-situ synchrotron wide-angle X-ray scattering (WAXS) data shows that phase transitions from wurtzite to rocksalt occur at higher pressures than for bulk material. Bulk modulus calculations not only show that the wurtzite CdS nanomaterial is more compressible than rocksalt, but also that the compressibility of CdS nanoparticles depends on their particle size. Furthermore, sintering of spherical nanoparticles into nanorods was observed for the 7.5 nm CdS nanoparticles. Our results provide new insights into the fundamental properties of nanoparticles under high pressure that will inform designs of new nanomaterial structures for emerging applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afzaal, M. and O’Brien, P., J. Mater. Chem 16, 1597 (2006).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K., Fan, H., Nano Lett. 17, 6916 (2018).CrossRefGoogle Scholar
Zhang, Q., Guo, X., Huang, X., Huang, S., Li, D., Luo, Y., Shen, Q., Toyoda, T. and Meng, Q., Phys. Chem. Chem. Phys. 13, 4659 (2011).CrossRefGoogle Scholar
Cheng, L., Xiang, Q., Liao, Y. and Zhang, H., Energy Environ. Sci. 11, 1362 (2018).CrossRefGoogle Scholar
Liu, J., Liang, Y., Wang, L., Wang, B., Zhang, T. and Yi, F., Mat. Sci. Semicon. Proc. 56, 217 (2016).CrossRefGoogle Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett. 18, 560 (2018).CrossRefGoogle Scholar
Owen, N., Smith, P., Martin, J. and Wright, A., J. Phys. Chem. Solids 24, 1519 (1963).CrossRefGoogle Scholar
Mitra, R. N., Doshi, M., Zhang, X., Tyus, J. C., Bengtsson, N., Fletcher, S., Page, B. D., Turkson, J., Gesquiere, A. J. and Gunning, P. T., Biomaterials 33, 1500 (2012).CrossRefGoogle Scholar
Zhang, J., Li, D., Chen, R. and Xiong, Q., Nature 493, 504 (2013).CrossRefGoogle Scholar
Wang, Y., Fu, H., Wang, Y., Tan, L., Chen, L. and Chen, Y., Phys. Chem. Chem. Phys. 18, 12175 (2016).CrossRefGoogle Scholar
Yong, K.-T., Sahoo, Y., Swihart, M. T. and Prasad, P. N., J. Phys. Chem. C 111, 2447 (2007).CrossRefGoogle Scholar
Zhang, P. and Gao, L., Langmuir 19, 208 (2003).CrossRefGoogle Scholar
Chae, W.-S., Shin, H.-W., Lee, E.-S., Shin, E.-J., Jung, J.-S. and Kim, Y.-R., J. Phys. Chem. B 109, 6204 (2005).CrossRefGoogle Scholar
Chu, H., Li, X., Chen, G., Zhou, W., Zhang, Y., Jin, Z., Xu, J. and Li, Y., Cryst. Growth Des. 5, 1801 (2005).CrossRefGoogle Scholar
Li, B., Wen, X., Li, R., Wang, Z., Clem, P. G. and Fan, H., Nat. Commun. 5, 4179 (2014).CrossRefGoogle Scholar
Wu, H., Bai, F., Sun, Z., Haddad, R. E., Boye, D. M., Wang, Z. and Fan, H., Angew. Chem. Int. Ed. 49, 8431 (2010).CrossRefGoogle Scholar
Li, B., Bian, K., Zhou, X., Lu, P., Liu, S., Brener, I., Sinclair, M., Luk, T., Schunk, H., Alarid, L. and Fan, H., Sci. Adv. 3, e1602916 (2017).CrossRefGoogle Scholar
Bai, F., Bian, K., Huang, X., Wang, Z. and Fan, H., Chem. Rev. (2019).Google Scholar
Wu, H., Bai, F., Sun, Z., Haddad, R. E., Boye, D. M., Wang, Z., Huang, J. Y. and Fan, H., J. Am. Chem. Soc. 132, 12826 (2010).CrossRefGoogle Scholar
Wang, Z., Schliehe, C., Wang, T., Nagaoka, Y., Cao, Y. C., Bassett, W. A., Wu, H., Fan, H. and Weller, H., J. Am. Chem. Soc. 133, 14484 (2011).CrossRefGoogle Scholar
Li, W., Fan, H. and Li, J., Nano Lett. 14, 4951 (2014).CrossRefGoogle Scholar
Wu, H., Wang, Z. and Fan, H., J. Am. Chem. Soc. 136, 7634 (2014).CrossRefGoogle Scholar
Wang, Z., Wen, X.-D., Hoffmann, R., Son, J. S., Li, R., Fang, C.-C., Smilgies, D.-M. and Hyeon, T., Proc. Natl. Acad. Sci. U.S.A. 107, 17119 (2010).CrossRefGoogle Scholar
Wang, Z., Chen, O., Cao, C. Y., Finkelstein, K., Smilgies, D.-M., Lu, X. and Bassett, W. A., Rev. Sci. Instrum. 81, 093902 (2010).CrossRefGoogle Scholar
Zhu, H., Nagaoka, Y., Hills-Kimball, K., Tan, R., Yu, L., Fang, Y., Wang, K., Li, R., Wang, Z. and Chen, O., J. Am. Chem. Soc. 139, 8408 (2017).CrossRefGoogle Scholar
Nagaoka, Y., Hills‐Kimball, K., Tan, R., Li, R., Wang, Z. and Chen, O., Adv. Mater. 29, 1606666 (2017).CrossRefGoogle Scholar
Mishra, A., Garg, N., Pandey, K. and Singh, V., J. Phys.: Conf. Ser. 377, 12012 (2012).Google Scholar
Martín-Rodríguez, R., González, J., Valiente, R., Aguado, F., Santamaría-Pérez, D. and Rodríguez, F., J. Appl. Phys. 111, 063516 (2012).CrossRefGoogle Scholar
Nanba, T., Muneyasu, M., Hiraoka, N., Kaga, S., Williams, G., Shimomura, O. and Adachi, T., J. Synchrotron Radiat. 5, 1016 (1998).CrossRefGoogle Scholar
Tolbert, S. H. and Alivisatos, A., Annu. Rev. Phys. 46, 595 (1995).CrossRefGoogle Scholar
Zhao, R., Yang, T., Luo, Y., Chuai, M., Wu, X., Zhang, Y., Ma, Y. and Zhang, M., RSC Adv. 7, 31433 (2017).CrossRefGoogle Scholar
Zhao, R., Wang, P., Yao, B., Hu, T., Yang, T., Xiao, B., Wang, S., Xiao, C. and Zhang, M., RSC Adv. 5, 17582 (2015).CrossRefGoogle Scholar
Arora, V., Soni, U., Mittal, M., Yadav, S. and Sapra, S., Journal of colloid and interface science 491, 329 (2017).CrossRefGoogle Scholar
Fang, Y., Li, Z., Jiang, Y., Wang, X., Chen, H.-Y., Tao, N. and Wang, W., Proc. Natl. Acad. Sci. U.S.A. 114, 10566 (2017).CrossRefGoogle Scholar
Park, C., Popov, D., Ikuta, D., Lin, C., Kenney-Benson, C., Rod, E., Bommannavar, A. and Shen, G., Rev. Sci. Instrum. 86, 072205 (2015).CrossRefGoogle ScholarPubMed
Prescher, C. and Prakapenka, V. B., High Pressure Research 35, 223 (2015).CrossRefGoogle Scholar
Li, Q.-J. and Liu, B.-B., Chin. Phys. B 25, 076107 (2016).CrossRefGoogle Scholar
Fei, L., Xu, Y., Wu, X., Chen, G., Li, Y., Li, B., Deng, S., Smirnov, S., Fan, H., Luo, H., Nanoscale, 6, 3664 (2014).CrossRefGoogle Scholar
Kennedy, J. and Benedick, W., J. Phys. Chem. Solids 27, 125 (1966).CrossRefGoogle Scholar
Murnaghan, F. D., Amer. J. Math. 59, 235 (1937).CrossRefGoogle Scholar
Birch, F., Phys. Rev. 71, 809 (1947).CrossRefGoogle Scholar
Murnaghan, F., Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).CrossRefGoogle Scholar
Grünwald, M., Zayak, A., Neaton, J. B., Geissler, P. L. and Rabani, E., J. Chem. Phys. 136, 234111 (2012).CrossRefGoogle Scholar
Jiang, J., Olsen, J. S., Gerward, L. and Mørup, S., EPL 44, 620 (1998).CrossRefGoogle Scholar
Gu, Q., Krauss, G., Steurer, W., Gramm, F. and Cervellino, A., Phys. Rev. Lett. 100, 045502 (2008).CrossRefGoogle Scholar
Clark, S., Prilliman, S., Erdonmez, C. and Alivisatos, A., Nanotechnology 16, 2813 (2005).CrossRefGoogle Scholar
Bian, K., Bassett, W., Wang, Z. and Hanrath, T., J. Phys. Chem. Lett 5, 3688 (2014).CrossRefGoogle Scholar
Gilbert, B., Zhang, H., Chen, B., Kunz, M., Huang, F. and Banfield, J., Phys. Rev. 74, 115405 (2006).CrossRefGoogle Scholar