Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T07:29:05.619Z Has data issue: false hasContentIssue false

Aluminum Composites Reinforced With Graphite: a Densification and Mechanical Response Study

Published online by Cambridge University Press:  05 September 2017

J.M. Mendoza-Duarte
Affiliation:
Centro de Investigación en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, Chihuahua, Chih.31136, México.
F.C. Robles-Hernandez
Affiliation:
Department of Mechanical Engineering Technology, University of Houston, Houston, TX77204-4020, U.S.A.
I. Estrada-Guel*
Affiliation:
Centro de Investigación en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, Chihuahua, Chih.31136, México.
C. Carreño-Gallardo
Affiliation:
Centro de Investigación en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, Chihuahua, Chih.31136, México.
R. Martínez-Sánchez
Affiliation:
Centro de Investigación en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, Chihuahua, Chih.31136, México.
Get access

Abstract

Aluminum-Graphite composites were prepared from pure aluminum and natural graphite the mixture was processed by the mechanical milling (MM) technique. The microstructural characteristics of prepared composites were investigated by X-rays diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The mechanical response of samples was evaluated by compression and hardness tests. To obtain solid samples from milled powders we used an alternative sintering process based on induction heating. Although this method is frequently used for refractory ceramics fabrication (>1500°C), it has not been properly evaluated for materials processing at low temperature (<500°C). This work presents a comparative study of Al-Gr composites sintered by using two routes: conventional pressure-less and high frequency induction heating. After the inductive sintering, is noticeable a pronounced reduction of porosity and increase on the mechanical response of induction sintered specimens, compared with the processed by conventional route. Also, yield strength and hardness increases with graphite addition and induction sintering reaching an increase of 50 and 90%, respectively (compared with an Alp-2h blank).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, S.N., Kumar, L., Mat. Sci. Eng. A 667, 1632 (2016).CrossRefGoogle Scholar
Park, N.R., Lee, D.M., Ko, I.Y., Yoon, J.K., Shon, I.J., Cer. Inter. 35, 31473151 (2009).Google Scholar
Durowoju, M.O., Sadiku, E.R., Diouf, S., Shongwe, M.B., Olubambi, P.A., Powder Tech. 284, 504513 (2015).Google Scholar
Imran, M., Khan, A.R.A., Megeri, S., Sadik, S., Res.-Eff. Techs. 2, 8188 (2016).Google Scholar
Khorasani, S., Manesh, S.H., Abdizadeh, H., Composites: Part A 68, 177183 (2015).Google Scholar
Yolshina, L.A., Muradymov, R.V., Korsun, I.V., Yakovlev, G.A., Smirnov, S.V., J. Alloys Comp. 663, 449459 (2016).Google Scholar
Latief, F.H., Sherif, E.S.M., Almajid, A.A., J. Anal. App. Pyr. 92, 485492 (2011).CrossRefGoogle Scholar
Latief, F.H., Sherif, E.S.M., J. Ind. Eng. Chem. 18, 21292134 (2012).CrossRefGoogle Scholar
Basariya, M.R., Srivastava, V.C., Mukhopadhyay, N.K., Mat. Des. 64, 542549 (2014).Google Scholar
Ghasali, E., Pakseresht, A.H., Alizadeh, M., Shirvanimoghaddam, K., Ebadzadeh, T., J. Alloys Comp. 688, 527533 (2016).CrossRefGoogle Scholar
Liu, D., Xiong, Y., Li, P., Lin, Y., Chen, F., Zhang, L., Schoenung, J.M., Lavernia, E.J., J. Alloys Comp. 679, 426435 (2016).Google Scholar
Maurya, R.S., Sahu, A., Laha, T., J. Non-Crys. Sol. 453, 17 (2016).Google Scholar
Lee, G., McKittrick, J., Ivanov, E., Olevsky, E.A., Int. J. Ref. Met. H. Mat. 61, 2229 (2016).Google Scholar
Cooke, R.W., Kraus, N.P., Bishop, D.P., Mat. Sci. Eng. A 657, 7181 (2016).Google Scholar
Guel, I.E., Gallardo, C.C., Sánchez, R.M., J. Alloys Comp. 536S, S175S179 (2012).Google Scholar
Suryanarayana, C., Progs. Mater. Sci. 46, 1184 (2001).Google Scholar
Henriques, B., Soares, D., Teixeira, J.C., Silva, F.S., Mat. Res. 17(3), 664671 (2014).Google Scholar
Upadhyaya, G.S., Mat. Chem. Phys. 67 15 (2001).CrossRefGoogle Scholar
Kim, H.C., Shon, I.J., Yoon, J.K., Doh, J.M., Munir, Z.A., Int. J. Refr. Met. Hard Mat. 24, 427431 (2006).Google Scholar
Salamon, D., Maca, K. and Shen, Z., Scripta Mater. 66, 899902 (2012).CrossRefGoogle Scholar
Shon, I.J., Ko, I.Y., Chae, S.M., Na, K., Cer. Int. 37, 679682 (2011).CrossRefGoogle Scholar
Marek, I., Vojtěch, D., Michalcová, A., Kubatík, T.F., Mat. Sci. Eng. A 627, 326332 (2015).CrossRefGoogle Scholar