Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T22:12:28.815Z Has data issue: false hasContentIssue false

Atmospherically Processed and Stable Cs-Pb Based Perovskite Solar Cells

Published online by Cambridge University Press:  20 June 2017

Shubhra Bansal*
Affiliation:
Department of Mechanical Engineering, Center of Energy Research, University of Nevada Las Vegas, Las Vegas, Nevada 89154, U.S.A.
Michelle Chiu
Affiliation:
Department of Mechanical Engineering, Center of Energy Research, University of Nevada Las Vegas, Las Vegas, Nevada 89154, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work, a planar heterojunction superstrate n-i-p device based on Zn(O,S) electron transport layer and CsPbI2Br absorber material at 1.93 eV bandgap is presented. The CsPbI2Br films are deposited using a 2-step atmospheric solution deposition process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL). Best device with an efficiency of 12.34 % and 11.94% in reverse and forward scans respectively and stabilized power output of 12.14 mW/cm2 has been demonstrated via atmospheric solution processing with minimal hysteresis between forward and reverse scans. The devices show voltage dependent current collection as well as light-dark crossover in forward bias. Light soaking tests at 65 °C and 1-sun at Voc, resulted in open-circuit voltage and fill-factor degradation. Electroluminescence (EL) after 100 hours of light soaking shows a reduction in overall EL intensity as well a shift in emission to lower wavelength. The devices exhibit a positive temperature coefficient of about 0.14 %/°C. It is found that Zn(O,S) is a viable alternative electron transport layer to replace TiO2. By replacing methylammonium cation with cesium and addition of Br has improved the stability of the perovskite phase.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc., 131, 17, 6050 (2009).Google Scholar
Park, N.-G., Mater. Today, 18, 65 (2015).Google Scholar
Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A., Snaith, H. J., Science, 342, 6156, 341 (2013).Google Scholar
Noh, J., Im, S. H., Heo, J. H., Mandal, T. N., Seok, S. I., Nanoletters, 13, 1764 (2013).Google Scholar
Yin, W-J, Shi, T., Yan, Y., Appl. Phys. Let., 104, 063903 (2014).CrossRefGoogle Scholar
Kim, J., Lee, S. H., Hong, K. H., J. Phys. Chem. Lett., 5, 8, 1312 (2014).Google Scholar
Yang, W.S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S., Science, 348, 1234 (2015).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S. J., H-Baker, R., Gao, P., Nazeeruddin, M. K., Grätzel, M., Nature, 499, 7458, 316 (2013).Google Scholar
Snaith, H. J., J. Phys. Chem. Lett., 4, 21, 3623 (2013).Google Scholar
NREL efficiency chart http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (Accessed 23 April 2017).Google Scholar
Green, M., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D., Prog. Photovol: Res. Appl.., 24, 1, 3 (2016).Google Scholar
Leijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A., Snaith, H. J., Adv. Energy Mater., 5, 1500963 (2015).CrossRefGoogle Scholar
Matteocci, F., Razza, S., Giacomo, F. D., Casaluci, S., Mincuzzi, G., Brown, T. M., D’Epifanio, A., Licoccia, S., Carlo, A. D., Phys. Chem. Chem. Phys., 16, 3918 (2014).Google Scholar
Djurisic, A. B., Liu, F., Ng, A. M. C., Dong, Q., Wong, M. K., Ng, A., Surya, C., Phys. Status Solidi RRL, 10, 4, 281, (2016).Google Scholar
Han, Y., Meyer, S., Dkhissi, Y., Weber, K., M Pringle, J., Bach, U., Spiccia, L., Cheng, Y. B., J. Mat. Chem. A, 3, 8139 (2015).Google Scholar
Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., Snaith, H. J., Nat. Comm., 4, 3885 (2013).Google Scholar
Mitzi, D. B., Prog. Inorg. Chem., 48, 1 (2007).Google Scholar
Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M. K., Grätzel, M., and De Angelis, F., Nano Lett., 14, 3608 (2014).Google Scholar
Li, Z., Yang, M., Park, J-S., Wei, S-H., Berry, J. J., Zhu, K., Chem. Mater., 28, 1, 284 (2016).Google Scholar
McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Hörantner, M. T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M. B., Herz, L. M., Snaith, H. J., Science, 351, 6269, 151 (2016).Google Scholar
Yi, C. Luo, J. Meloni, S. Boziki, A. A-Astani, C. Grätzel, Zakeeruddin, S. M., Röthlisberger, U., Grätzel, M., Energy Environ. Sci., 9, 656 (2016).Google Scholar
Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O., Palgrave, R. G., Chem. Sci., 7, 4548 (2016).Google Scholar
Munura, G., Rives-Arna, V., and Saucedo, A. , J. Chem. Soc., Faraday Trans. 1, 75, 736 (1979).Google Scholar
Llansola-Portoles, M.J., Bergkamp, J.J., Finkelstein-Shapiro, D., Sherman, B. D., Kodis, G., Dimitrijevic, N. M., Gust, D., Moore, T. A., and Moore, A. L., J. Phys. Chem. A, 118, 10631 (2014).Google Scholar
Pathak, S.K., Abate, A., Leijtens, T., Hollman, D. J., Teuscher, J., Pazos, L., Docampo, P., Steiner, U., Snaith, H. J., Adv. Energy Mater., 8, 1301667 (2014).CrossRefGoogle Scholar
Azpiroz, J.M., Mosconi, E., Bisquertcd, J. and Angelis, F. D., Energy Environ. Sci., 8, 2118 (2015).Google Scholar
Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazeeruddin, M.K. and Grätzel, M., Nature Commun., 5, 3834 (2014).CrossRefGoogle Scholar
Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., Yang, S., Angew. Chem. Int. Ed., 53, 12571 (2014).Google Scholar
You, J., Meng, L., Song, T-B., Guo, T-F., Yang, Y., Chang, W-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N. D., Yang, Y., Nat. Nanotech., 11, 75 (2016).Google Scholar
Christians, J. A., Fung, R. C. M., Kamat, P. V., J. Am. Chem. Soc., 136, 2, 758 (2014).CrossRefGoogle Scholar
Liu, D. Y. and Kelly, T. L., Nat. Photon., 8, 2, 133 (2014).Google Scholar
Huang, I., Yong, K., ACS Appl. Mater. Inter., 8, 4226 (2016).Google Scholar
Kulbak, M., Cahen, D., Hodes, G., J. Phys. Chem. Lett., 6, 2452 (2015).Google Scholar
Qi, L., Mao, G., Ao, J., Appl. Surf. Sci., 254, 18, 5711 (2008).CrossRefGoogle Scholar
Sutton, R. J., Eperon, G. E., Miranda, L., Parrott, E. L., Kamino, B. A., Patel, J. B., Hörantner, M. T., Johnston, M. B., Haghighirad, A. S., Moore, D. T., Snaith, H. J., Adv. Energy Mater., pp. 1502458 (2016).Google Scholar
Moller, C. K., Nature, 182, 1436 (1958).Google Scholar
Sharma, S., Weiden, N., Weiss, A., Z. Phys. Chem., 175, 63 (1992).Google Scholar
Niemegeers, A. and Burgelman, M., Proc. 25th IEEE Photovoltaic Spec. Conf., Washington DC, IEEE, 901 (1996).Google Scholar
Bansal, S., Aryal, P., Proc. 43rd IEEE Photovoltaic Spec. Conf., Portland, OR (2016).Google Scholar
Beal, R. E., Slotcavage, D. J., Leijtens, T., Bowring, A. R., Belisle, R. A., Nguyen, W. H., Burkhard, G. F., Hoke, E. T., McGehee, M. D., J. Phys. Chem. Lett., 7, 746 (2016).CrossRefGoogle Scholar
Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., McGehee, M. D., Chem. Sci., 6, 613 (2015).Google Scholar
Dupré, O., Vaillon, R., Green, M. A., Sol. Energy Mat. Sol. Cells, 140, 92 (2015).Google Scholar
Sutton, R. J., Eperon, G. E., Miranda, L., Parrott, E. S., Kamino, B. A., Patel, J. B., Hörantner, M. T., Johnston, M. B., Haghighirad, A. A., Moore, D. T., Snaith, H. J., Adv. Energy Mat., 6, 8 (2016).Google Scholar
Futscher, M. H. and Ehrler, B., ACS Energy Lett., 1, 4, 863 (2016).Google Scholar
Todorov, T., Gershon, T., Gunawan, O., Lee, Y. S.. Sturdevant, C., Chang, L.-Y., Guha, S., Adv. Energy Mat., 5, 23, 1500799 (2015).Google Scholar