Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T12:54:33.852Z Has data issue: false hasContentIssue false

Charge Trapping Analysis of High Speed Diamond FETs

Published online by Cambridge University Press:  06 February 2017

Pankaj B. Shah*
Affiliation:
Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA
James Weil
Affiliation:
Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA
A. Glen Birdwell
Affiliation:
Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA
Tony Ivanov
Affiliation:
Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Charge carrier trapping in diamond surface conduction field effect transistors (FETs) has been analyzed. For these devices two methods were used to obtain a negative electron affinity diamond surface; either plasma hydrogenation or annealing in an H2 environment. In both cases the Al2O3 gate dielectric can trap both electrons and holes in deep energy levels with emission timescales of seconds, while the diamond – Al2O3 interface traps exhibit much shorter time scales in the microsecond range. Capacitance-Voltage (CV) analysis indicates that these interface traps exhibit acceptor-like characteristics. Correlation with CV based free hole density measurements indicates that the conductance based interface trap analysis provides a method to quantify surface characteristics that lead to surface conduction in hydrogenated diamond where atmospheric adsorbates provide the acceptor states for transfer doping of the surface.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Materials Research Society 2017

References

REFERENCES

Won, Y., Cho, J., Agonafer, D., Asheghi, M., and Goodson, K.E., IEEE Trans. On Compon, Packag, and Manuf. Technol. 5, 737744 (2015).Google Scholar
Wort, C.J.H., Balmer, R. S., Materials Today 11, 2228 (2008).CrossRefGoogle Scholar
Hauf, M.V., Simon, P., Seifert, M., Holleitner, A. W., Stutzmann, M., and Garrido, J.A., Phys. Rev. B 89, 115426–1 – 115426-5 (2014).Google Scholar
Kim, H., Lee, J., and Lu, W., Phys Stat. Sol. (a) 202, 841845 (2005).Google Scholar
Madaan, N., Kanyal, S. S, Jessen, D. S., Vail, M.A., Dadson, A.E., Engelhard, M. H., Samha, H., and Linford, M.R., Surface Science Spectra 20, 4348 (2013).CrossRefGoogle Scholar
Hirama, K., Sato, H., Harada, Y., Yamamoto, YH., and Kasu, M., IEEE Elect. Dev. Lett. 33, 11111113 (2012).Google Scholar
Miller, E.J., Dang, X.Z., Wieder, H.H., Asbeck, P.M., Yu, E. T., Sullivan, G. J., and Redwing, J. M., J. Appl. Phys. 87, 80708073 (2000).Google Scholar
Lin, H.C., Brammertz, G., Martens, K., deValicourt, G, Negre, L., Wang, W-E, Tsai, W., Meuris, M., and Heyns, M., Appl. Phys. Lett. 94, 153508–1 – 153508-3 (2009).Google Scholar
Glesener, J.W., Appl Phys. Lett. 64, 217219 (1994).Google Scholar
Ristein, J., Maier, F., Riedel, M., Stammer, M., and Ley, L., Diamond and Rel. Mater. 10, 416422 (2001).Google Scholar
Kasu, M., Hirama, K., Harada, K. nad Oishi, T., Jpn. J Appl. Phys. 55, 041301–1 – 041301-5 (2016).Google Scholar