Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T05:08:58.095Z Has data issue: false hasContentIssue false

Cost Effective 3D Printed Device for Tuberculosis Nanoformulation Manufacturing

Published online by Cambridge University Press:  29 May 2018

Lorene Chan
Affiliation:
Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Square, San Jose CA 95112, U.S.A.
Ai Nguyen
Affiliation:
Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Square, San Jose CA 95112, U.S.A.
Anuja Bokare
Affiliation:
Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Square, San Jose CA 95112, U.S.A.
Folarin Erogbogbo*
Affiliation:
Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Square, San Jose CA 95112, U.S.A.
Get access

Abstract

A 3D printed device has been developed for cost-effective production of rifampicin loaded lipid polymer hybrid nanoparticles. These nanoparticles show considerable potential for research related to the treatment of Tuberculosis. The nanoparticles synthesized by the device possess a core-shell drug-lipid polymer assembly. The synthesis conditions have been optimized with respect to the parameters like flow-rate, size of device, and the concentration of rifampicin and poly lactic-co-glycolic acid (in which the drug molecules are incorporated). The nanoparticles synthesized by the 3D printed device yield smaller nanoparticles with narrow size distributions in contrast to traditional sonication method. The device can be operated either by hand or by using syringe pumps. These nanoparticles also show excellent antibacterial activity which typically correlates with a reduction in drug dosing frequency to promote patient adherence to drug regimens.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ventola, C.L., Pharm Ther. 4 277–83 (2015).Google Scholar
Bokare, A., Pai, M. and Athawale, A., Sol Energy, 91, 111119 (2013).CrossRefGoogle Scholar
Comas, I. and Gagneux, S., PLoS Pathog. 5, e1000600 (2009).CrossRefGoogle Scholar
Connolly, L.E., Edelstein, P.H. and Ramakrishnan, L., PLoS Med. 4, (2007).CrossRefGoogle Scholar
Fogel, N., Tuberculosis, 95, 527531 e0143149 (2015).CrossRefGoogle ScholarPubMed
Gülbay, B.E., Gürkan, O.U., Yıldız, O. A., Önen, Z. P., Erkekol, F.O. and Baççıoğlu, A, Respir Med. 10, 1834–42, (2006).CrossRefGoogle Scholar
Jang, M. H., Lee, S. and Hwang, Y. S., Plos one. 10, (2015).Google Scholar
Nachega, J.B. and Chaisson, R.E., Clin Infect Dis. 36, 2430 (2003).CrossRefGoogle Scholar
Hickey, J.W., Santos, J.L., Williford, J-M. and Mao, H.Q., J Controlled Release. 219, 536–47 (2015).CrossRefGoogle Scholar
Jong, W.H.D. and Borm, P.J.. Int J Nanomedicine. 2, 133–49 (2008)CrossRefGoogle Scholar
Gelperina, S., Kisich, K., Iseman, M.D. and Heifets, L., Am J Respir Crit Care Med. 12, 1487–90 (2005).CrossRefGoogle Scholar
Dikmen, G., Genç, L. and Guney, G., J Mater Sci Eng. 5, 468472 (2011).Google Scholar
Singh, S., Pandey, V.K., Tewari, R.P. and Agarwal, V., Indian J Sci Technol. 3, 177180 (2011).Google Scholar
Hadinoto, K., Sundaresan, A. and Cheow, W.S., Eur J Pharm Biopharm. 3, 427443 (2013)CrossRefGoogle Scholar
Dave, V., Yadav, R.B., Kushwaha, K., Yadav, S., Sharma, S. and Agrawal, U., Bioact Mater. 4, 269280 (2017).CrossRefGoogle Scholar
Chaudhary, Z., Ahmed, N., Rehman, A. U. and Khan, G.M., Int J Polym Mater Polym Biomater. 2, 86100 (2018).CrossRefGoogle Scholar
Bachhav, S.S., Dighe, V.D., Kotak, D. and Devarajan, P.V., Int J Pharm. 1, 612622 (2017).CrossRefGoogle Scholar
Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., Crit Rev Ther Drug Carrier Syst. 6, 523–80 (2009).CrossRefGoogle Scholar
Wang, Y., Kho, K., Cheow, W.S. and Hadinoto, K., Int J Pharm. 1-2, 98106 (2012).CrossRefGoogle Scholar
Liu, Z., Ramezani, M., Fox, R.O., Hill, J.C. and Olsen, M.G., Ind Eng Chem Res. 16, 45124525 (2015).CrossRefGoogle Scholar
Zhang, Y. and Clapp, A.R., RSC Adv. 89, 4839948410 (2014).CrossRefGoogle Scholar
Liu, Y., Cheng, C., Liu, Y., Prud’homme, R. K. and Fox, R.O., Chem Eng Sci. 11, 28292842 (2008).CrossRefGoogle Scholar
Shen, H., Hong, S., Prud’homme, R.K. and Liu, Y., J Nanoparticle Res. 9, 41094120 (2011).CrossRefGoogle Scholar
Shi, Y., Cheng, J.C., Fox, R.O. and Olsen, M.G., J. Micromech. Microeng. 7, 075005 (2013)CrossRefGoogle Scholar
Zhang, L., Chan, J.M., Gu, F.X., Rhee, J.W., Wang, A.Z. and Radovic-Moreno, A.F., ACS Nano. 8, 16961702 (2008).CrossRefGoogle Scholar
Qin-bo, W., Finsy, R., Hai-bo, X. and Xi, L., J Zhejiang Univ Sci B. 8, 705707 (2005).Google Scholar
Lim J, J., Yeap, S. P., Che, H.X., Low, S.C., Nanoscale Res Lett. 8, 381 (2013).CrossRefGoogle Scholar
Choudhary, R., Khurana, D., Kumar, A. and Subudhi, S., J Exp Nanosci. 1, 140151 (2017)CrossRefGoogle Scholar