Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T06:59:36.993Z Has data issue: false hasContentIssue false

Development of a hybrid metal-oxides (Li2O-Al2O3-Al3Fe-Al3Fe5O12) reinforced polycaprolactone composite

Published online by Cambridge University Press:  21 January 2020

N.N. Zurita-Méndez
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000; Morelia, Michoacán, México.
J. Beltran-González
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000; Morelia, Michoacán, México.
G. Carbajal-De la Torre
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000; Morelia, Michoacán, México.
M.A. Espinosa-Medina*
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000; Morelia, Michoacán, México.
*
*Corresponding author: marespmed@gmail.com
Get access

Abstract

This paper addresses the chemical synthesis and characterization of a composite formed by Li2O-Al2O3-Al3Fe-Al3Fe5O12/PCL which were obtained by the process of reduction of ferric chloride (FeCl3) with lithium aluminum hydride (LiAlH4) in an open atmosphere. The goal of the development of this hybrid material was to perform a superparamagnetic material with several potential applications. The results of the characterizations by scanning electron microscopy (SEM) and vibrating sample magnetometer showed a Li2O-Al2O3-Al3Fe-Al3Fe5O12 “desert rose stone”-like morphology 3D hierarchical powders formation when particles were sintered at 850 °C. Homogeneous nanometric particles after calcination at 1100 °C were observed. X-ray diffraction analysis were performed to determine their composition. Subsequently, the superparamagnetic powders were added by dispersion in a polycaprolactone (PCL) matrix, and then, were evaluated by SEM for the observation of their morphologies. The composite material presented a polymer network with an opened structure, a well dispersion of the oxides particles into the interstices with irregular topography and reliefs.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chung, D. D. L.. Carbon Compos, pp. 161217, (2017). http://dx.doi.org/10.1016/B978-0-12-804459-9.00003-8CrossRefGoogle Scholar
Low, I. M., Ceramic-Matrix Composites: Microstructure, Properties and Applications. Elsevier Science, (2006). https://books.google.com.mx/books?id=jrpQAwAAQBAJGoogle Scholar
Wang, R.-M., Zheng, S.-R., and Zheng, Y.-P., Woodhead Publishing., pp. 1548 (2011). DOI: 10.1533/9780857092229.1CrossRefGoogle Scholar
Fernandes, H. R., Kapoor, S., Patel, Y., Ngai, K., Levin, K., Germanov, Y., Krishtopa, L., Kroeker, S., and Goel, A., J. Non. Cryst. Solids, 502 pp. 142151 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.08.005CrossRefGoogle Scholar
Xia, L., Zhong, B., Song, T., Wu, S., Zhang, T., and Wen, G., J. Non. Cryst. Solids, 432, pp. 510 - 518 (2016). DOI: 10.1016/j.jnoncrysol.2015.11.012CrossRefGoogle Scholar
Arabyazdi, S., Yazdanpanah, A., Ansari Hamedani, A., Ramedani, A., and Moztarzadeh, F., J. Non. Cryst. Solids, 503504, pp. 139150 (2019). DOI: 10.1016/j.jnoncrysol.2018.09.040Google Scholar
Salman, S. M., Salama, S. N., and Abo-Mosallam, H. A., Ceram. Int., 42, pp. 86508656 (2016). DOI: 10.1016/j.ceramint.2016.02.097CrossRefGoogle Scholar
Zakharchenko, N. I., Russ. J. Appl. Chem., 74, pp. 229234 (2001). DOI: 10.1023/A:1012718016470CrossRefGoogle Scholar
Aaltonen, T., Nilsen, O., Magrasó, A., and Fjellvåg, H., Chem. Mater., 23, pp. 46694675 (2011). DOI: 10.1021/cm200899kCrossRefGoogle Scholar
Kumar, D., Narayan, J., Kvit, A. V., Sharma, A. K., and Sankar, J., J. Magn. Magn. Mater. 232, pp. 161167 (2001). DOI: 10.1016/S0304-8853(01)00191-3CrossRefGoogle Scholar
Yahya, N., Al, R., Masoud, H., Daud, H., Aziz, A. A., Zaid, H. M., and Iskandar, B. S., Am. J. of Engg. & Applied Sci., 2, pp. 7679 (2009). ISSN 1941-7020Google Scholar
Praveena, K., Matteppanavar, S., Liu, H. L., and Sadhana, K., J. Mater. Sci. Mater. Electron. 28, pp. 41794191 (2017). DOI: 10.1007/s10854-016-6038-4CrossRefGoogle Scholar
Hossein, D., Hamidreza, H., All, S., Ali, R. and Mohammad-Hossein, G.. R. S. C. Advances, (2015).Google Scholar
Shastri, A., Das, A. K., Krishnakumar, S., Singh, P. J., and Raja Sekhar, B. N., J. Chem. Phys., 147, (2017). DOI: 10.1063/1.5006126CrossRefGoogle Scholar
Wang, X. and Andrews, L., Mol. Phys., 107 pp. 739748 (2009). DOI: 10.1080/00268970802526583CrossRefGoogle Scholar
Zurita-Mendez, N. N., Carbajal-De la Torre, G., Estevez, M., Ballesteros-Almanza, L., Cadenas, E., and Espinosa-Medina, M. A., Mater. Chem. Phys., p. 121773, (2019). DOI: 10.1016/j.matchemphys.2019.121773CrossRefGoogle Scholar
Zapata, J.E., Moreno, G., Márquez, E.J.. INCI online, 27, p.p. 544-550 (2002) http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442002001000006&lng=es.Google Scholar