Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T03:34:42.414Z Has data issue: false hasContentIssue false

Effect of Laser Welding on the Mechanical Properties AISI 1018 Steel

Published online by Cambridge University Press:  16 November 2017

M. A. Carrizalez-Vazquez*
Affiliation:
Corporación Mexicana de Investigación en Materiales S.A. de C.V., Ciencia y Tecnología No. 790 Fracc. Saltillo 400, C.P. 25290 Saltillo, Coahuila, México.
M. Alvarez-Vera
Affiliation:
Corporación Mexicana de Investigación en Materiales S.A. de C.V., Ciencia y Tecnología No. 790 Fracc. Saltillo 400, C.P. 25290 Saltillo, Coahuila, México.
A. Hernández-Rodríguez
Affiliation:
Corporación Mexicana de Investigación en Materiales S.A. de C.V., Ciencia y Tecnología No. 790 Fracc. Saltillo 400, C.P. 25290 Saltillo, Coahuila, México.
J. M. Orona-Hinojos
Affiliation:
Corporación Mexicana de Investigación en Materiales S.A. de C.V., Ciencia y Tecnología No. 790 Fracc. Saltillo 400, C.P. 25290 Saltillo, Coahuila, México. SISAMEX S.A. de C.V., Carretera Monterrey - Colombia S/N Km. 6, C.P. 66050 Escobedo, Nuevo León, México.
Gabriel Sandoval-Vázquez
Affiliation:
SISAMEX S.A. de C.V., Carretera Monterrey - Colombia S/N Km. 6, C.P. 66050 Escobedo, Nuevo León, México.
J. L. Acevedo-Dávila
Affiliation:
Corporación Mexicana de Investigación en Materiales S.A. de C.V., Ciencia y Tecnología No. 790 Fracc. Saltillo 400, C.P. 25290 Saltillo, Coahuila, México.
Get access

Abstract

Laser welding processes offer significant advantages such as high welding speed, narrow heat affected zone and quality of the welding joint. In this study, the process parameters of laser power and welding speed were modified for AISI 1018 steel plates of 8 mm thickness and compared using finite element method. The results of cross-section microstructure, heat affected zone and fusion zone were characterized. The grain refinement was affected as the parameters were modified. Tensile and microhardness tests were performed to determine the mechanical properties of the welding joints. Microhardness increased in fusion zone and decreased in heat affected zone. Tensile test showed ductile fracture in heat affected zone of the welding joints. The simulated profiles were compared with the experimental observations showing a reasonable agreement.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Qian, M. R. D. K. S., Hong-Shuang, D., Jun-Chen, L., Bao-Qiang, W., “A comparative study of the microstructure and properties of 800MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding,” Mater. Sci. Eng. A, vol. 669, pp. 150158, 2016.Google Scholar
Alcock, J. A. and Baufeld, B., “Diode laser welding of stainless steel 304L,” J. Mater. Process. Technol., vol. 240, pp. 138144, 2016.Google Scholar
Esfahani, M. N., Coupland, J., and Marimuthu, S., “Microstructure and mechanical properties of a laser welded low carbon-stainless steel joint,” J. Mater. Process. Technol., vol. 214, pp. 29412948, 2014.Google Scholar
Wang, R., Lei, Y., and Shi, Y., “Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet,” Opt. Laser Technol., vol. 43, pp. 870873, 2011.Google Scholar
Zhang, L. J., Zhang, J. X., Gumenyuk, A., Rethmeier, M., and Na, S. J., “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol., vol. 214, pp. 17101720, 2014.CrossRefGoogle Scholar
Fang, C., Song, Y. T., Wu, W. Y., Wei, J., Xin, J. J., Wu, H. P., and Salminen, A., “Thermal analysis of laser welding for ITER correction coil case,” Fusion Eng. Des., vol. 100, pp. 357363, 2015.Google Scholar
Ma, J., Kong, F., and Kovacevic, R., “Finite-element thermal analysis of laser welding of galvanized high-strength steel in a zero-gap lap joint configuration and its experimental verification,” Mater. Des., vol. 36, pp. 348358, 2012.Google Scholar
Xu, J. J., Gilles, P., Duan, Y. G., and Yu, C., “Temperature and residual stress simulations of the NeT single-bead-on-plate specimen using SYSWELD,” Int. J. Press. Vessel. Pip., vol. 99–100, pp. 5160, 2012.CrossRefGoogle Scholar
Rahman Chukkan, J., Vasudevan, M., Muthukumaran, S., Ravi Kumar, R., and Chandrasekhar, N., “Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation,” J. Mater. Process. Technol., vol. 219, pp. 4859, 2015.Google Scholar
Jiang, P., Wang, C., Zhou, Q., Shao, X., Shu, L., and Li, X., “Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II,” Adv. Eng. Softw., vol. 99, pp. 147160, 2016.Google Scholar
Sathiya, P. Ã. and Jaleel, M. Y. A., “Measurement of the bead profile and microstructural characterization of a CO2 laser welded AISI 904 L super austenitic stainless steel,” Opt. Laser Technol., 2010.CrossRefGoogle Scholar
Wang, J., Yang, L., Sun, M., Liu, T., and Li, H., “A study of the softening mechanisms of laser-welded DP1000 steel butt joints,” Mater. Des., vol. 97, pp. 118125, 2016.Google Scholar
Benasciutti, D., Lanzutti, A., Rupil, G., and Haeberle, E. F., “Microstructural and mechanical characterisation of laser-welded lap joints with linear and circular beads in thin low carbon steel sheets,” Mater. Des., vol. 62, pp. 205216, 2014.CrossRefGoogle Scholar
Bhadeshia, H. and Honeycombe, R., “Steels: Microstructure and Properties,” Third., Elsevier Ltd., 2006, pp. 10.CrossRefGoogle Scholar
Porter, D. A. and Easterling, K. E., “Phase Transformations in Metals and Alloys,” Second., Chapman & Hall, 1992, pp. 347.Google Scholar
Xiong, Z. P., Kostryzhev, A. G., Stanford, N. E., and Pereloma, E. V., “Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting,” Mater. Des., vol. 88, pp. 537549, 2015.Google Scholar
Hazratinezhad, M., Mostafa Arab, N. B., Sufizadeh, A. R., and Torkamany, M. J., “Mechanical and metallurgical properties of pulsed neodymium-doped yttrium aluminum garnet laser welding of dual phase steels,” Mater. Des., vol. 33, pp. 8387, 2012.CrossRefGoogle Scholar
Saha, Y. Z. D. C., Westerbaan, D., Nayak, S. S., Biro, E., Gerlich, A. P., “Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels,” Mater. Sci. Eng. A, vol. 607, pp. 445453, 2014.CrossRefGoogle Scholar
Farabi, N., Chen, D. L., and Zhou, Y., “Microstructure and mechanical properties of laser welded dissimilar DP600 / DP980 dual-phase steel joints,” J. Alloys Compd., vol. 509, pp. 982989, 2011.Google Scholar
Mazar Atabaki, M., Ma, J., Yang, G., and Kovacevic, R., “Hybrid laser/arc welding of advanced high strength steel in different butt joint configurations,” Mater. Des., vol. 64, pp. 573587, 2014.CrossRefGoogle Scholar