Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T04:10:25.908Z Has data issue: false hasContentIssue false

Effect of surface cleaning on contact resistivity of amorphous GeCu2Te3 to a W electrode

Published online by Cambridge University Press:  03 May 2016

S. Shindo
Affiliation:
Department of Materials Science, Tohoku University, 6-6-11 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
Y. Sutou*
Affiliation:
Department of Materials Science, Tohoku University, 6-6-11 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
J. Koike
Affiliation:
Department of Materials Science, Tohoku University, 6-6-11 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
Y. Saito
Affiliation:
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Y.-H. Song
Affiliation:
Department of Electronic Engineering, Hanyang University, Seoul 133-791, Korea
Get access

Abstract

The contact resistivity, ρ c, between phase change material (PCM) and an electrode plays an important role in the operation of highly scaled phase change random access memory (PCRAM). We investigated the effect of surface cleaning on the ρ c between a W electrode and amorphous GeCu2Te3 (GCT) which shows high thermal stability. The surface cleaning of the amorphous GCT was conducted by Ar reverse sputtering. The ρ c of the amorphous GCT whose surface was cleaned with Ar reverse sputtering was 6.7×10-3Ω cm2. Meanwhile, the ρ c of the amorphous GCT with no surface cleaning was 8.0×10-5Ω cm2. The low ρ c in the amorphous GCT with no surface cleaning was apparently due to the existence of a low resistance Cu-rich underlayer which was formed as a consequence of surface oxidation of the amorphous GCT. These results indicate that the surface of a PCM must be treated carefully to accurately measure the contact resistivity between the PCM and electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meena, J.S., Sze, S.M., Chand, U., Tseng, T.-Y., Nanoscale Res. Lett. 9, 526 (2014).Google Scholar
Raoux, S., Xionga, F., Wuttig, M. and Pop, E., MRS bulletin 39, 703 (2014).Google Scholar
Wuttig, M. and Yamada, N., Nature Mater. 6, 824 (2007).Google Scholar
Loke, D., Lee, T. H., Wang, W. J., Shi, L. P., Zhao, R., Yeo, Y. C., Chong, T. C. and Elliott, S. R., Science 336, 1566 (2012).CrossRefGoogle Scholar
Kim, I.S., Cho, S.L., Im, D.H., Cho, E.H., Kim, D.H., Oh, G.H., Ahn, D.H., Park, S.O., Nam, S.W., Moon, J.T., Chung, C.H., Symp VLSI Technol., 203 (2010).Google Scholar
Yamada, N., Ohno, E., Nishiuchi, K., and Akahira, N., J. Appl. Phys. 69, 2849 (1991).Google Scholar
Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., and Wuttig, M., J. Appl. Phys. 87, 4130 (2000).Google Scholar
Kato, T. and Tanaka, K., Jpn. J. Appl. Phys., Part 1 44, 7340 (2005).Google Scholar
Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S., and Bez, R., IEDM Technol. Digit., 699 (2003).Google Scholar
Sutou, Y., Kamada, T., Sumiya, M., Saito, Y. and Koike, J., Acta Mater. 60, (3) 872 (2012).Google Scholar
Kamada, T., Sutou, Y., Sumiya, M., Saito, Y. and Koike, J., Thin Solid Films 520(13), 4389 (2012).Google Scholar
Saito, Y., Sutou, Y. and Koike, J., Appl. Phys. Lett. 102, 051910 (2013).Google Scholar
Huang, R., Sun, K., Kiang, K. S., Chen, R., Wang, Y., Gholipour, B., Hewak, D. W. and De. Groot, C. H., Semicond. Sci. Technol. 29, 095003 (2014).Google Scholar
Shindo, S., Sutou, Y., Koike, J., Saito, Y. and Song, Y. H., Mater. Sci. Semicond. Process. 47, 1 (2016).Google Scholar
Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981) pp. 187191.Google Scholar
Teraji, T. and Hara, S., Phys. Rev. B 70, 035312 (2004).Google Scholar
Kim, J. K., Lee, J.-L., Lee, J. W., Shin, H. E., Park, Y. J., and Kim, T., Appl. Phys. Lett. 73, 2953 (1998).Google Scholar
Saito, Y., Sutou, Y. and Koike, J., J. Phys. Chem. C 18(46), 26973 (2014).Google Scholar
Schroder, D. K., Semiconductor Material and Device Characterization (Wiley, New York, 1990) pp. 144145.Google Scholar
Saito, Y., Shindo, S., Sutou, Y. and Koike, J., J. Phys. D: Appl. Phys. 47, 475302 (2014).Google Scholar
Kencke, D. L., Karpov, I. V., Johnson, B. G., Lee, S. J., Kau, D. K., Hudgens, S. J., Reifenberg, J. P., Savransky, S. D., Zhang, J., Giles, M. D. and Spadini, G., 2007 IEEE International Electron Devices Meeting, 323-326 (2007).Google Scholar