No CrossRef data available.
Article contents
Effect of the Metallic Aging on the Microstructure and Mechanical Properties of Titanium Alloy
Published online by Cambridge University Press: 04 September 2017
Abstract
Different aging heat treatments were performed in a Titanium alloy using as aging media metallic baths in comparison to typical furnace aging. As a first step, a Duplex Aging (DA) consisted of solubilization followed by quenching to room temperature after aging heat treatment in different metallic baths (Zn, Sn and Bi). A second procedure was Alternative Aging (AA) which consisted of solubilization and direct aging inside three different aforementioned baths. Microstructural aging variations begins at half hour until 30 h at 550°C inside metallic bath of Zn, Sn or Bi. Both kinds of aging promoted a microstructural variation and so on microhardness values. Microstructural analysis by Optical Microscopy showed a structural refinement after AA treatment. The highest hardness value of 375 HVN was achieved in Alternative Aging with Zn bath, which was found to be dependent on laminar α phase refining. Moreover, after AA treatment for 0.5, 1, 2, 3, 4, 10 and 30 h at 550°C in the metallic bath of Zn and Sn, the results indicated similar hardness values in different times, resulting in the fastest kinetic for Sn metallic bath at 2 h compared to that 4 h in Zn metallic bath. The observed increase in micro-hardness is not very attractive, it is recommended to use large aging times in order to stabilize final spacing of microstructural features in AA treatment.
Keywords
- Type
- Articles
- Information
- MRS Advances , Volume 2 , Issue 50: International Materials Research Congress XXV , 2017 , pp. 2837 - 2845
- Copyright
- Copyright © Materials Research Society 2017