Published online by Cambridge University Press: 11 April 2016
Calcium phosphate cements show self-hardening reaction upon mixing with liquids to form calcium-deficient hydroxyapatite (CDHA) or dicalcium phosphate dihydrate. The effects of particle sizes, crystallinities, and natural polymers such as tilapia scale collagen (Col) and hyaluronic acid as a dispersant on the mechanical properties of alpha tricalcium phosphate (TCP) cements mixed with citric acid (CA) as an additive were investigated. Three types of alpha TCP particles were fabricated with spray-dry (SD; 14 μm), freeze-dry (FD; 45 μm), and cold isostatic press (CIP; 134 μm) methods, followed by sintering at 1300°C and ground/crushed. The amounts of Ca dissolution from these particles were in the order of SD > FD > CIP. The CA liquid was added to the powders of SD-FD or SD-CIP, and kneaded under different liquid/powder ratios. The cements containing CIP particles showed lower compressive strength at 22.9 ± 1.5 MPa than those containing FD particles at 28.3 ± 2.5 MPa, even though the apparent densities of the cements containing CIP material was higher. Although the packing density of powders is an important factor on the mechanical properties of cements, the dissolution of Ca ion has a greater impact on the mechanical properties. The addition of Col into the cements increased the mechanical properties at 33.6 ± 2.5 MPa at 1 day to enhance the re-precipitation of CDHA.