Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T03:50:22.069Z Has data issue: false hasContentIssue false

Extremely uniform epitaxial growth of graphene from sputtered SiC films on SiC substrates

Published online by Cambridge University Press:  20 December 2016

Fuminori Mitsuhashi*
Affiliation:
Semiconductor Technologies Laboratory, Sumitomo Electric Industries, Ltd., Koya-kita 1-1-1, Itami, Hyogo, Japan
Masaya Okada
Affiliation:
Semiconductor Technologies Laboratory, Sumitomo Electric Industries, Ltd., Koya-kita 1-1-1, Itami, Hyogo, Japan
Yasunori Tateno
Affiliation:
Transmission Devices Laboratory, Sumitomo Electric Industries, Ltd., Taya 1, Sakae-ku, Yokohama, Kanagawa, Japan
Takashi Nakabayashi
Affiliation:
Transmission Devices Laboratory, Sumitomo Electric Industries, Ltd., Taya 1, Sakae-ku, Yokohama, Kanagawa, Japan
Masaki Ueno
Affiliation:
Semiconductor Technologies Laboratory, Sumitomo Electric Industries, Ltd., Koya-kita 1-1-1, Itami, Hyogo, Japan
Hiroyuki Nagasawa
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi, Japan
Hirokazu Fukidome
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi, Japan
Maki Suemitsu
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi, Japan
Get access

Abstract

A novel method to fabricate uniform epitaxial graphene on C-face SiC substrates was investigated. Graphene was grown on the C-face 6H-SiC substrates with a sputtered SiC film by annealing temperatures ranging from 1400 to 1900 °C under an Ar ambient. The fractional area of the graphene having the layer number of two was about 95% in a 75×75 μm square by a Raman mapping and a low energy electron microscopy. Graphene on the C-face SiC fabricated by this method is quite uniform compared to that made by a conventional method without the sputtered SiC films and is thus suitable for high frequency analog devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S, Geim, A. K, Morozov, S. V, Jiang, D, Zhang, Y, Dubonos, S. V, Grigorieva, I. V, and Firsov, A. A, Science 305 666 (2004).Google Scholar
Novoselov, K. S, Geim, A. K, Morozov, S. V, Jiang, D, Zhang, Y, Dubonos, S. V, Grigorieva, I. V, and Firsov, A. A, Nature 438 197 (2005).CrossRefGoogle Scholar
Zhang, Y, Tan, Y-W, Stormer, H. L. and Kim, P, Nature 438 201 (2005).Google Scholar
Novoselov, K. S, Fal’ko, V. I, Colombo, L, Gellert, P. R, Schwab, M. G and Kim, K, Nature 490 192 (2012).Google Scholar
Morozov, S. V, Novoselov, K. S, Katsnelson, M. I, Shedin, F, Elias, D. C, Jaszczak, J. A. and Geim, A. K, Phys. Rev. Lett. 100 016602 (2008).Google Scholar
Geim, A. K. and Novoselov, K. S, Nature Mater. 6 183 (2007).CrossRefGoogle Scholar
Norimatsu, W. and Kusunoki, M. J. Phys. D: Appl. Phys. 47 094017 (2014).CrossRefGoogle Scholar
Hibino, H., Kageshima, H., Maeda, F., Nagase, M., Kobayashi, Y., Kobayashi, Y., and Yamaguchi, H., e-J. Surf. Sci. Nanotech 6 107 (2008).Google Scholar
Tedesco, J. L., VanMil, B. L., Myers-Ward, R. L., McCrate, J. M., Kitt, S. A., Campbell, P. M., Jernigan, G. G., Culbertson, J. C., Eddy, C. R. Jr. and Gaskill, D. K., Appl. Phys. Lett. 95 122102 (2009).Google Scholar