Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T17:42:14.520Z Has data issue: false hasContentIssue false

Fabrication of Hollow Metal Microneedle Arrays Using a Molding and Electroplating Method

Published online by Cambridge University Press:  15 March 2019

Philip R Miller
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A.
Matthew Moorman
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A.
Ryan D Boehm
Affiliation:
Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina27695-7115, U.S.A.
Steven Wolfley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A.
Victor Chavez
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A.
Justin T. Baca
Affiliation:
University of New Mexico School of Medicine, Albuquerque, NM, 87131, U.S.A. Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM87131, U.S.A.
Carlee Ashley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A. University of New Mexico School of Medicine, Albuquerque, NM, 87131, U.S.A. Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM87131, U.S.A. Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina27695-7115, U.S.A.
Igal Brener
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A.
Roger J Narayan*
Affiliation:
Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina27695-7115, U.S.A.
Ronen Polsky
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A.
Get access

Abstract:

The need for hollow microneedle arrays is important for both drug delivery and wearable sensor applications; however, their fabrication poses many challenges. Hollow metal microneedle arrays residing on a flexible metal foil substrate were created by combining additive manufacturing, micromolding, and electroplating approaches in a process we refer to as electromolding. A solid microneedle with inward facing ledge was fabricated with a two photon polymerization (2PP) system utilizing laser direct write (LDW) and then molded with polydimethylsiloxane. These molds were then coated with a seed layer of Ti/Au and subsequently electroplated with pulsed deposition to create hollow microneedles. An inward facing ledge provided a physical blocking platform to restrict deposition of the metal seed layer for creation of the microneedle bore. Various ledge sizes were tested and showed that the resulting seed layer void could be controlled via the ledge length. Mechanical properties of the PDMS mold was adjusted via the precursor ratio to create a more ductile mold that eliminated tip damage to the microneedles upon removal from the molds. Master structures were capable of being molded numerous times and molds were able to be reused. SEM/EDX analysis showed that trace amounts of the PDMS mold were transferred to the metal microneedle upon removal. The microneedle substrate showed a degree of flexibility that withstood over 100 cycles of bending from side to side without damaging. Microneedles were tested for their fracture strength and were capable of puncturing porcine skin and injecting a dye.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Kim, Y. C., Park, J. H., and Prausnitz, M. R., Adv. Drug Deliv. Rev. 64, 1547 (2012).CrossRefGoogle Scholar
El-Laboudi, A., Oliver, N. S., Cass, A., and Johnston, D., Diabetes Technol. Ther. 15, 101-115 (2013).CrossRefGoogle Scholar
Kim, Y. C. and Prausnitz, M. R., Drug Deliv. Transl. Res. 1, 7 (2011).CrossRefGoogle Scholar
Miller, P. R., Narayan, R. J., and Polsky, R., J. Mater. Chem. B 4, 1379 (2016).CrossRefGoogle Scholar
Vrdoljak, A., Vaccine: Dev. Ther. 3, 47 (2013).Google Scholar
Miller, P. R., Skoog, S. A., Edwards, T. L., Lopez, D. M., Wheeler, D. R., Arango, D. C., Xiao, X., Brozik, S. M., Wang, J., Polsky, R., and Narayan, R. J., Talanta 88, 739 (2012).CrossRefGoogle Scholar
Jina, A., Tierney, M. J., Tamada, J. A., McGill, S., Desai, S., Chua, B., Chang, A., and Christiansen, M., J. Diabetes Sci. Technol. 8, 483 (2014).CrossRefGoogle Scholar
Norman, J. J., Choi, S. O., Tong, N. T., Aiyar, A. R., Patel, S. R., Prausnitz, M. R., and Allen, M. G., Biomed. Microdev. 15, 203 (2013).CrossRefGoogle Scholar
Gardeniers, H.J.G.E., Luttge, R., Berenschot, E. J. W., de Boer, M. J., Yeshurun, S. Y., Hefetz, M., van’t Oever, R., and van den Berg, A., J. Microelectromech. Syst. 12, 855 (2003).CrossRefGoogle Scholar
Paik, S. J., Byun, S., Lim, J. M., a Park, Y., Lee, A., Chung, S., Chang, J., Chun, K., and Cho, D., Sens. Actuat. A 114, 276 (2004).CrossRefGoogle Scholar
Henry, S., McAllister, D. V., Allen, M. G., and Prausnitz, M. R., J. Pharm. Sci. 87, 922 (1998).CrossRefGoogle Scholar
Yung, K. L., Xu, Y., Kang, C., Liu, H., Tam, K. F., Ko, S. M., Kwan, F. Y., and Lee, T. M. H., J. Micromech. Microeng. 22, 015016 (2011).Google Scholar
Miller, P. R., Gittard, S. D., Edwards, T. L., Lopez, D. M., Xiao, X., Wheeler, D. R., Monteiro-Riviere, N. A., Brozik, S. M., Polsky, R., and Narayan, R. J., Biomicrofluidics, 5, 013415 (2011).CrossRefGoogle Scholar
Davis, S. P., , Martanto, W., Allen, M. G., & Prausnitz, M. R.. IEEE Trans. Biomed. Eng. 52, 909 (2005).CrossRefGoogle Scholar
Kim, K., Park, D. S., Lu, H. M., Che, W., Kim, K., Lee, J. B., and Ahn, C. H., J. Micromech. Microeng. 14, 597 (2004).CrossRefGoogle Scholar
Lee, K., Lee, H. C., Lee, D. S., and Jung, H., Adv. Mater. 22, 483 (2010).CrossRefGoogle Scholar
Wang, P. C., Paik, S. J., Kim, J., Kim, S. H., and Allen, M. G., Proc. IEEE 24th Int. Conf. Micro Electro Mech. Syst. 1039, 2011.Google Scholar
Pérennès, F., Marmiroli, B., Matteucci, M., Tormen, M., Vaccari, L., and Di Fabrizio, E., J. Micromech. Microeng. 16, 473 (2006).CrossRefGoogle Scholar
Matteucci, M., Fanetti, M., Casella, M., Gramatica, F., Gavioli, L., Tormen, M., Grenci, G., De Angelis, F., Di Fabrizio, E., Microelect. Eng. 86, 752 (2009).CrossRefGoogle Scholar
McGeough, J. A., Leu, M. C., Rajurkar, K. P., De Silva, A. K. M., and Liu, Q., CIRP Ann. Manufact. Technol. 50, 499 (2001).CrossRefGoogle Scholar
Chia, X., Eng, A. Y. S., Ambrosi, A., Tan, S. M., and Pumera, M., Chem. Rev. 115, 11941 (2015).CrossRefGoogle Scholar
Xia, Y. and Whitesides, G. M., Ann. Rev. Mater. Sci. 28, 153 (1998).CrossRefGoogle Scholar
Miller, P. R., Xiao, X., Brener, I., Burckel, D. B., Narayan, R., and Polsky, R., Adv. Healthcare Mater. 3, 876 (2014).CrossRefGoogle Scholar
Miller, P. R., Boehm, R. D., Skoog, S. A., Edwards, T. L., Rodriguez, M., Brozik, S., Brener, I., Byrd, T., Baca, J. T., Ashley, C., Narayan, R. J., Polsky, R., Electroanalysis 27, 2239 (2015).CrossRefGoogle Scholar
Chandrasekar, M. S. and Pushpavanam, M., Electrochim. Acta 53, 3313 (2008).CrossRefGoogle Scholar
Hadian, S. E. and Gabe, D. R., Surf. Coat. Technol. 122, 118 (1999).CrossRefGoogle Scholar
Brown, X. Q., Ookawa, K., and Wong, J. Y., Biomaterials 26, 3123 (2005).CrossRefGoogle Scholar