Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T23:33:31.690Z Has data issue: false hasContentIssue false

Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long-wave infrared

Published online by Cambridge University Press:  24 January 2019

Rachel N. Evans*
Affiliation:
Physics Department, University of Central Florida, Orlando, FL32816, U.S.A.
Seth R. Calhoun
Affiliation:
Physics Department, University of Central Florida, Orlando, FL32816, U.S.A.
Jonathan R. Brescia
Affiliation:
Physics Department, University of Central Florida, Orlando, FL32816, U.S.A.
Justin W. Cleary
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH45433, U.S.A.
Evan M. Smith
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH45433, U.S.A. KBRwyle, Beavercreek, OH45440, U.S.A.
Robert E. Peale
Affiliation:
Physics Department, University of Central Florida, Orlando, FL32816, U.S.A.
Get access

Abstract

Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a dielectric of thickness t, and thin separated metal top-surface structures of dimension l. The fundamental resonance wavelength is predicted by an analytic standing-wave model based on t, l, and the dielectric refractive index spectrum. For the dielectrics SiO2, AlN, and TiO2, values for l of a few microns give fundamental resonances in the 8-12 μm long-wave infrared (LWIR) wavelength region. Agreement with theory is better for t/l exceeding 0.1. Harmonics at shorter wavelengths were already known, but we show that there are additional resonances in the far-infrared 20 - 50 μm wavelength range in MIM structures designed to have LWIR fundamental resonances. These new resonances are consistent with the model if far-IR dispersion features in the index spectrum are considered. LWIR fundamental absorptions are experimentally shown to be optimized for a ratio t/l of 0.1 to 0.3 for SiO2- and AlN-based MIM absorbers, respectively, with TiO2-based MIM optimized at an intermediate ratio.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, E. M., Nath, J., Ginn, J., Peale, R. E., and Shelton, D.: Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers. Proc. SPIE 9819, 98191Q (2016).Google Scholar
Gokhale, V. J., Myers, P. D., and Rais-Zadeh, M.: Subwavelength plasmonic absorbers for spectrally selective resonant infrared detectors. Proc. IEEE Sensors Conf. Valencia, Spain (2-5 Nov. 2014). DOI: 10.1109/ICSENS.2014.6985167Google Scholar
Nath, J., Modak, S., Rezadad, I., Panjwani, D., Rezaie, F., Cleary, J. W., and Peale, R. E.: Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt. Express 23, 20366 (2015).CrossRefGoogle ScholarPubMed
Calhoun, S. R., Lowry, V. C., Stack, R., Evans, R. N., Brescia, J. R., Fredricksen, C. J., Nath, J., and Peale, R. E.: Effect of dispersion on metal-insulator-metal infrared absorption resonances. MRS. Comm. 8, 830 (2018).CrossRefGoogle Scholar
Nath, J., Maukonen, D., Smith, E., Figueiredo, P., Zummo, G., Panjwani, D., Peale, R. E., Boreman, G., Cleary, J. W., and Eyink, K.: Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared. Proc. SPIE 8704, 8041D (2013).Google Scholar
Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmüller, M., Fedosenko, O., Machulik, S., Aleksandrova, A., Monastyrskyi, G., Flores, Y., and Masselink, W. T.: Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789 (2012).CrossRefGoogle ScholarPubMed
Popova, S., Tolstykh, T., and Vorobev, V.: Optical characteristics of amorphous quartz in the 1400–200 cm-1 region. Opt. Spectrosc. 33, 444 (1972).Google Scholar
Kitamura, R., Pilon, L., and Jonasz, M.: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 33, 8118 (2007).CrossRefGoogle Scholar
Refractiveindex.info. (accessed on Nov. 15, 2018).Google Scholar
Palik, E. D.: Handbook of Optical Constants of Solids, (Academic 1997) pp. 394-396.Google Scholar
Park, J., Kang, J-H., Liu, X. and Brongersma, M. L.: Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers. Scientific Reports 5, 15754 (2015).CrossRefGoogle ScholarPubMed
Adams, M. J.: An Introduction to Optical Waveguides, (Wiley 1981) p. 68.Google Scholar
Ye, Y., Jin, Y., and He, S.: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B 27, 498 (2010).CrossRefGoogle Scholar
Nath, J., Panjwani, D., K.- Rezaie, F., Yesiltas, M., Smith, E. M., Ginn, J. C., Shelton, D. J., Hirschmugl, C., Cleary, J. W., Peale, R. E.: Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity. Proc. SPIE 9544, 95442M (2015).Google Scholar
Lefebvre, A., Costantini, D., Doyen, I., Lévesque, Q., Lorent, E., Jacolin, D., Greffet, J-J., Boutami, S., and Benisty, H.: CMOS compatible metal-insulator-metal plasmonic perfect absorbers. Optical Materials Express 6, 2389 (2016).CrossRefGoogle Scholar