Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T08:55:13.099Z Has data issue: false hasContentIssue false

First-principles calculations on structure and electronic properties of α-zirconium hydrogen phosphate

Published online by Cambridge University Press:  15 July 2019

V. W. Elloh
Affiliation:
Department of Allied Sciences (Physics), School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India Department of Materials Science and Engineering, University of Ghana, Legon, Ghana
Soni Mishra*
Affiliation:
Department of Physics, Graphic Era Hill University, Dehradun248002, India
A. Yaya*
Affiliation:
Department of Materials Science and Engineering, University of Ghana, Legon, Ghana
Abhishek Kumar Mishra*
Affiliation:
Department of Allied Sciences (Physics), School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
*
*Corresponding Author’s Email: akmishra@ddn.upes.ac.in; mishra_lu@hotmail.com (Abhishek K Mishra), AYaya@ug.edu.gh (Abu Yaya)
*Corresponding Author’s Email: akmishra@ddn.upes.ac.in; mishra_lu@hotmail.com (Abhishek K Mishra), AYaya@ug.edu.gh (Abu Yaya)
Get access

Abstract

Layered zirconium hydrogen phosphate intercalation compounds can be easily tuned, leading to potential applications in many fields, specifically by introducing them in different polymeric composites as nanofillers. Employing first-principles density functional theory based calculations, we have investigated ground state electronic structure properties of α-zirconium hydrogen phosphate (α-ZrP). We discuss the structure and electronic band structure, where projected density of states calculations have been discussed to understand the different atomic orbitals contributions to electronic bands. ZrP has numerous properties of interest for use in many semiconductor device structures, specifically, layered zirconium hydrogen phosphate has substantial promise for both optical devices and for high power electronics due to its large direct band gap. Our structural calculations suggest that layered zirconium hydrogen phosphate exhibits monoclinic structure. The calculated structural parameters and band gap are in good agreement with available experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pan, B., Zhang, Q., Du, W., Zhang, W., and Xu, Z., Water Res. 41, 3103 (2007).CrossRefGoogle Scholar
Takei, T., Sekijima, K., Wang, D., Kumada, N., and Kinomura, N., Solid State Ionics 170 111 (2004).CrossRefGoogle Scholar
Clearfield, A. and Stynes, J. A., J. Inorg. Nucl. Chem. 26, 117 (1964).CrossRefGoogle Scholar
Díaz, A., David, A., Pérez, R., González, M. L., Báez, A., Wark, S. E., Zhang, P., Clearfield, A. and Colón, J. L., Biomacromolecules 11, 2465 (2010).CrossRefGoogle Scholar
Díaz, A., Saxena, V., González, J., David, A., Casañas, B., Carpenter, C., Batteas, J. D., Colón, J. L., Clearfield, A. and Hussain, H. D., Chem. Commun. 48, 1754 (2012).CrossRefGoogle Scholar
Costantino, U., Marmottini, F., Curini, M. and Rosati, O., Catal Lett, 22, 333 (1993).CrossRefGoogle Scholar
Wu, H., Liu, C., Chen, J., Yang, Y. and Chen, Y., Polym. Int. 59, 923 (2010).CrossRefGoogle Scholar
Scheetz, E., Agrawal, D. K., Breval, E. and Roy, R., Waste Manage. 14, 489 (1994).CrossRefGoogle Scholar
Nissenson, A. R. and Fine, R. N.; Clinical dialysis. McGraw-Hill Medical Pub. Division, 2005.Google Scholar
Geim, K. and Novoselov, K S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C-Y, Galli, G., and Wang, F., Nano Lett. 10, 1271 (2010).CrossRefGoogle Scholar
Tian, W., Huang, L. B., Wang, D. W., and Roy, V. A. L., Sci. China Tech. Sci. 57, 2328 (2014).CrossRefGoogle Scholar
Lee, S. W., Cheng, Y. T., Ryu, I., and Greer, J. R., Sci. China Tech. Sci. 57, 652 (2014).CrossRefGoogle Scholar
Wang, De-Y., Liu, X. Q., Wang, J. S., Stec, A. A., and Hull, T. R., Polym. Degrad. Stabil. 94, 544 (2009).CrossRefGoogle Scholar
Boo, W.- J., Sun, L., Warren, G. L., Moghbelli, E., Pham, H., Clearfield, A., and Sue, H.-J., Polymer 48, 1075 (2007).CrossRefGoogle Scholar
Alongi, J., and Frache, A., Polym. Degrad. Stabil. 95 1928, (2010).CrossRefGoogle Scholar
Sun, L., Boo, W. J., Sun, D., Clearfield, A., and Sue, H-J, Chem. Mater. 19, 1749 (2007).CrossRefGoogle Scholar
Boo, W. J., Sun, L. Y., Liu, J., Clearfield, A., Sue, H.-J., Mullins, M. J., Pham, H., Compos. Sci. Tech. 67, 262 (2007).CrossRefGoogle Scholar
Xing, Y. J., Qian, M. F., Wang, G. W., Zhang, G. M., Guo, D. Z., and Wu, J. L., Sci. China Tech. Sci. 57, 44 (2014).CrossRefGoogle Scholar
Mao, H. H., Lu, X. H., Li, M. S., Yang, J., and Li, B., Appl. Surface Sci. 276, 787 (2013).CrossRefGoogle Scholar
Park, K., Park, J-H, Hong, S-G, Choi, B., Seo, S-W, Park, J-H, and Min, K., Phys. Chem. Chem. Phys. 18, 29076 (2016).CrossRefGoogle Scholar
Wang, L., Xu, W. H., Yang, R., Zhou, T., Hou, D., Zheng, X., Liu, J. H., and Huang, X. J., Anal. Chem. 85, 3984 (2013).CrossRefGoogle Scholar
Tang, M., Yang, T. S., and Zhang, Y., Sci. China Tech. Sci. 59, 436 (2016).CrossRefGoogle Scholar
Sanchez, J., Ramos-Garcés, M. V., Narkeviciute, I., Colón, J. L. and Jaramillo, T. F., Catal. 7, 132 (2017).CrossRefGoogle Scholar
Giannozzi, P. et al. , J.Phys.:Condens.Matter 21, 395502 (2009)Google Scholar
Vanderbilt, D., Phy. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Elsasser, M. Fahnle, Chan, C. T., and Ho, K. M., Phy. Rev B 49, 13975 (1994).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Fletcher, R., Practical Methods of Optimization. New York, Wiley, 1987.Google Scholar
Billeter, S. R., Turner, A. J., Thiel, W., Phys. Chem. Chem. Phys. 2, 2177 (2000).CrossRefGoogle Scholar
Billeter, S. R., Curioni, A., Andreoni, W., Comput. Mat. Sci. 27, 437 (2003).CrossRefGoogle Scholar
Hellmann, H., Einfuhrung in die Quantumchemie, Leipzig Franz Deutsche 1937.Google Scholar
Feynman, R. P., Phys. Rev. 56, 340 (1939).CrossRefGoogle Scholar
Clearfield, A., Ann. Rev. Mater. Sci. 14, 205 (1984).CrossRefGoogle Scholar
Alberti, G., Casciola, M., Costantino, U., and Vivani, R., Adv. Mater. 8, 291 (1996).CrossRefGoogle Scholar
Andersena, A. M. K. and Norby, P., Acta Cryst. B 56 618 (2000).CrossRefGoogle Scholar
Alberti, G. and Costantino, U., Journal of Solid State Chemistry 63, 455460 (1986).CrossRefGoogle Scholar
Curry, N. A. and Jones, D. W., J. Chem. Soc. A, 3725 - 3729 (1971).CrossRefGoogle Scholar
Catti, M., and Ivaldi, G., Z. Kristallogr. 146, 215 (1977).Google Scholar
Andersen, A. M. K., Norby, P., Hanson, J. C., and Vogt, T., Inorg. Chem. 37, 876 (1998).CrossRefGoogle Scholar
Krogh Andersen, A. M., Norby, P., and Vogt, T., J. Solid State Chem. 140, 266 (1998).CrossRefGoogle Scholar
Clearfield, A. and Smith, G. D., Inorg. Chem. 8, 431 (1969).CrossRefGoogle Scholar
Capitani, D., Casciola, M., Donnadio, A., and Vivani, R., Inorg. Chem. 49, 9409 (2010).CrossRefGoogle Scholar
Troup, J. M., and Clearfield, A., Inorg. Chem. 16, 3311 (1977).CrossRefGoogle Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K. A., APL Materials, 1, 011002 (2013).CrossRefGoogle Scholar