Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T20:05:35.768Z Has data issue: false hasContentIssue false

First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes

Published online by Cambridge University Press:  21 February 2019

Marnik Bercx*
Affiliation:
EMAT & CMT groups, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020Antwerpen, Belgium.
Levi Slap
Affiliation:
EMAT & CMT groups, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020Antwerpen, Belgium.
Bart Partoens
Affiliation:
EMAT & CMT groups, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020Antwerpen, Belgium.
Dirk Lamoen
Affiliation:
EMAT & CMT groups, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020Antwerpen, Belgium.
Get access

Abstract

Lithium-rich layered oxides such as Li2MnO3 have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li2MnO3 using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li2IrO3, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li0.5MnO3. For O1-Li0.5IrO3, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li2IrO3, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li0.5IrO3 provides valuable insight as to why Li2IrO3 does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Lu, Z., Beaulieu, L. Y., Donaberger, R. A., Thomas, C. L., and Dahn, J. R., J. Electrochem. Soc. 149, A778 (2002).CrossRefGoogle Scholar
Sathiya, M., Rousse, G., Ramesha, K., Laisa, C. P., Vezin, H., Sougrati, M. T., Doublet, M. L., Foix, D., Gonbeau, D., Walker, W., Prakash, A. S., Ben Hassine, M., Dupont, L., and Tarascon, J. M., Nat. Mater. 12, 827 (2013).CrossRefGoogle Scholar
McCalla, E., Abakumov, A. M., Saubanère, M., Foix, D., Berg, E. J., Rousse, G., Doublet, M.-L., Gonbeau, D., Novák, P., Van Tendeloo, G., Dominko, R., and Tarascon, J.-M., Science 350, 1516 (2015).CrossRefGoogle Scholar
Seo, D. H., Lee, J., Urban, A., Malik, R., Kang, S., and Ceder, G., Nat. Chem. 8, 692 (2016).CrossRefGoogle Scholar
Li, X., Qiao, Y., Guo, S., Xu, Z., Zhu, H., Zhang, X., Yuan, Y., He, P., Ishida, M., and Zhou, H., Adv. Mater. 30, (2018).Google Scholar
Saubanère, M., McCalla, E., Tarascon, J. M., and Doublet, M. L., Energy Environ. Sci. 9, 984 (2016).CrossRefGoogle Scholar
Chen, H. and Islam, M. S., Chem. Mater. 28, 6656 (2016).CrossRefGoogle Scholar
Sathiya, M., Abakumov, A. M., Foix, D., Rousse, G., Ramesha, K., Saubanère, M., Doublet, M. L., Vezin, H., Laisa, C. P., Prakash, A. S., Gonbeau, D., Vantendeloo, G., and Tarascon, J. M., Nat. Mater. 14, 230 (2015).CrossRefGoogle Scholar
Armstrong, A. R., Holzapfel, M., Novák, P., Johnson, C. S., Kang, S.-H., Thackeray, M. M., and Bruce, P. G., J. Am. Chem. Soc. 128, 8694 (2006).CrossRefGoogle Scholar
Castel, E., Berg, E. J., El Kazzi, M., Novák, P., and Villevieille, C., Chem. Mater. 26, 5051 (2014).CrossRefGoogle Scholar
Luo, K., Roberts, M. R., Guerrini, N., Tapia-Ruiz, N., Hao, R., Massel, F., Pickup, D. M., Ramos, S., Liu, Y. S., Guo, J., Chadwick, A. V., Duda, L. C., and Bruce, P. G., J. Am. Chem. Soc. 138, 11211 (2016).CrossRefGoogle Scholar
Koyama, Y., Tanaka, I., Nagao, M., and Kanno, R., J. Power Sources 189, 798 (2009).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Methfessel, M. and Paxton, A. T., Phys. Rev. B 40, 3616 (1989).CrossRefGoogle Scholar
Blöchl, P. E., Jepsen, O., and Andersen, O. K., Phys. Rev. B 49, 16223 (1994).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., and Sutton, A. P., Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
Henkelman, G. and Jónsson, H., J. Chem. Phys. 113, 9978 (2000).CrossRefGoogle Scholar
Sathiya, M., Rousse, G., Ramesha, K., Laisa, C. P., Vezin, H., Sougrati, M. T., Doublet, M.-L., Foix, D., Gonbeau, D., Walker, W., Prakash, A. S., Ben Hassine, M., Dupont, L., and Tarascon, J.-M., Nat. Mater. 12, 827 (2013).CrossRefGoogle Scholar
Saint, J. A., Doeff, M. M., and Reed, J., J. Power Sources 172, 189 (2007).CrossRefGoogle Scholar
Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., Persson, K. A., and Ceder, G., Comput. Mater. Sci. 68, 314 (2013).CrossRefGoogle Scholar
Jain, A., Hautier, G., Moore, C. J., Ong, P., Fischer, C. C., Mueller, T., Persson, K. A., and Ceder, G., Comput. Mater. Sci. 50, 2295 (2011).CrossRefGoogle Scholar
Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G.-M., Hautier, G., Gunter, D., and Persson, K. A., Concurr. Comput. Pract. Exp. 27, 5037 (2015).CrossRefGoogle Scholar
Van Der Ven, A., Bhattacharya, J., and Belak, A. A., Acc. Chem. Res. 46, 1216 (2013).CrossRefGoogle Scholar