Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T09:22:22.818Z Has data issue: false hasContentIssue false

First-principles Study on Water Dissociation in Grain Boundary of MAPbI3 Perovskite

Published online by Cambridge University Press:  20 August 2019

M.A.A. Asad
Affiliation:
Dept. of Electrical and Electronic Eng., Okayama University, Okayama700-8530, Japan
K. Sato
Affiliation:
Dept. of Electrical and Electronic Eng., Okayama University, Okayama700-8530, Japan
K. Tsuruta*
Affiliation:
Dept. of Electrical and Electronic Eng., Okayama University, Okayama700-8530, Japan
Get access

Abstract

Using first-principles calculation, we investigate water-dissociation dynamics in a Σ5 tilt grain boundary (GB) of Methyl-Ammonium Lead Triiodide (MAPbI3) perovskite. We find that the water dissociation process undergoes with two-step reaction at the GB: one of H ions of a water molecule that segregates into the GB is dissociated, migrates along the GB, and is attracted by an N atom in the MAPbI3, following the H-ion release from the ammonium. The process thereby generates OH ion and, in turn, leads to possible initiation of the degradation for crystallinity in the perovskite.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ming, W., Yang, D., Li, T., Zhang, L. and Du, M.H., Adv. Sci. 5, 1700662 (2018)CrossRefGoogle Scholar
Kye, Y.H., Yu, C.J., Jong, U.G., Chem, Y. and Walsh, A., J. Phys. Chem. 9, 2196 (2018)Google Scholar
Koocher, N.Z., Greco, D.S., Wang, F., Liu, S. and Rappe, A.M., J. Phys. Chem. Lett. 6, 4371(2015)CrossRefGoogle Scholar
Niu, G. D., Guo, X. D. and Wang, L. D., J. Mater. Chem. A, 3, 8970 -8980 (2015)CrossRefGoogle Scholar
Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., van Schilfgaarde, M. and Walsh, A., Nano Lett ., 14, 2584 -2590 (2014)CrossRefGoogle Scholar
Niu, G. D., Li, W. Z., Meng, F. Q., Wang, L. D., Dong, H. P. and Qiu, Y., J. Mater. Chem. A, 2, 705 -710 (2014)CrossRefGoogle Scholar
Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J. and Snaith, H.J., Nano Lett. 14, 5561 (2014)CrossRefGoogle Scholar
Dong, X., Fnag, X., Lv, M., Lin, B., Zhang, S., Ding, J., and Yuan, N., J. Mater. Chem. A 3, 5360 (2015)CrossRefGoogle Scholar
Guo, X., J. Phys. Chem. Solids 60, 539 (1999)CrossRefGoogle Scholar
Jong, U.G., Yu, C.J., Ri, G.C., McMahon, A.P., Harrison, N.M., Barns, P.R.F. and Walsh, A., J. Mater. Chem. A 6, 1067 (2018)CrossRefGoogle Scholar
Benedek, N.A., Chua, A.L. –S., Elsässer, C., Sutton, A.P. and Finnis, M.W., Condens. Matter Mater. Phys, 78, 064110 (2008)CrossRefGoogle Scholar
Kutsukake, K., Usami, N., Ohno, Y., Tokumoto, Y., and Yonenaga, I., Appl. Phys. Express, 6, 025505 (2013)CrossRefGoogle Scholar
Hafner, J., J. Comput. Chem. 29, 2044 (2008)CrossRefGoogle Scholar
Bloch, P.E., Phys. Rev. B 50, 17953 (1994)CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
Perdew, J., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
Jarvil, J., Li, J. and Rinke, P., New J. Phys. 20, 101001 (2018)Google Scholar
Long, R., Liu, J. and Prezhdo, O.V., J. Am. Chem. Soc. 138, 3884 (2016)CrossRefGoogle Scholar
He, Y., Nomura, K., Kalia, R.K., Nakano, A. and Vashishta, P., Phys. Rev. Mater. 2, 115605 (2018)CrossRefGoogle Scholar
Yin, W.J., Chen, H., Shi, T., Wei, S.H. and Yan, Y., Adv. Electron. Mater. 1, 1500044 (2015)CrossRefGoogle Scholar
Zhu, H., Miyata, K., Fu, Y., Wang, J., Joshi, P.P., Niesner, D., Williams, K.W., Jin, S. and Zhu, X.-Y., Science 353, 1409 (2016)CrossRefGoogle Scholar
Hakamata, T., Shimamura, K., Shimojo, F., Kalia, R.K., Nakano, A. and Vashishta, P., Sci. Rep. 6, 19599 (2016)CrossRefGoogle Scholar
Herring, D.H., Hydrogen Embrittlement, (Wire Forming Technology International, USA, 2010) p. 1Google Scholar