Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T12:54:23.643Z Has data issue: false hasContentIssue false

Graphene Quantum Dots Electrochemistry and Development of Ultrasensitive Enzymatic Glucose Sensor

Published online by Cambridge University Press:  02 April 2018

Sanju Gupta*
Affiliation:
Department of Physics and Astronomy and Advanced Materials Institute, Western Kentucky University, Bowling Green, KY42101, USA
Tyler Smith
Affiliation:
The Gatton Academy of Mathematics and Science, 1906 College Heights Blvd, Bowling Green, KY42101, USA
Alexander Banaszak
Affiliation:
Department of Physics and Astronomy and The Gatton Academy of Mathematics and Science, 1906 College Heights Blvd, Bowling Green, KY42101, USA
John Boeckl
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, Wright-PATT, OH45433, USA
*
*Address all correspondence to Sanju Gupta at sanju.gupta@wku.edu
Get access

Abstract

Graphene quantum dots (GQDs) - zero-dimensional materials - are sheets of a few nanometers in lateral dimension and exhibit quantum confinement and edge site effects where sp2-bonded carbon nanocore surrounded with edged plane functional moieties is promising as advanced electroactive sensing platforms. In this work, GQDs are synthesized by solvothermal and hydrothermal techniques, with optimal size of 5 nm. Their potential in fundamental (direct electron transfer) and applied (enzymatic glucose biosensor) electrochemistry are demonstrated. Glucose oxidase (GOx) immobilized on glassy carbon (GC) electrodes modified with GQDs are investigated by means of cyclic voltammetry, differential pulse voltammetry, and amperometry. Well-defined quasi-reversible redox peaks observed under various electrochemical parameters helped to determine diffusion coefficient (D) and first-order electron transfer rate (kET). The cyclic voltammetry curves showed homogeneous ion transport for GQD with D ranging between 8.45 × 10−9 m2 s−1 and 3 × 10−8 m2 s−1 following GO < rGO < GQD < GQD (with FcMeOH as redox probe) < GOx/rGO < GOx/GO < HRP/GQDs < GOx/GQDs. The developed GOx-GQDs biosensor responds efficiently and linearly to the presence of glucose over concentrations ranging 10 μM and 3 mM with limit of detection 1.35 μM and sensitivity 0.00769 μA μM−1·cm−2 as compared with rGO (0.025 μA μM−1 cm−2, 4.16 μM) and GO (0.064 μA μM−1 cm−2, 4.82 μM) nanosheets. The high performance and stability of GQDs is attributed to sufficiently large surface-to-volume ratio, excellent biocompatibility, abundant hydrophilic edge site density, and partially hydrophobic planar sites that favors GOx adsorption on the electrode surface and versatile architectures to ensure rapid charge transfer and electron/ion conduction (<10 ms). We also carried out similar studies with other enzymatic protein biomolecules on electrode surfaces prepared from GQD precursors for electrochemical comparison, thus opening up potential sensing applications in medicine as well as bio-nanotechnology.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K. S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).CrossRefGoogle ScholarPubMed
Ferrari, C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S., Koppens, F.H., Palermo, V., Pugno, N. et al. : Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 45984810 (2015).CrossRefGoogle ScholarPubMed
Conway, E. in Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum: New York, USA, (1999).CrossRefGoogle Scholar
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 39063924 (2010).CrossRefGoogle ScholarPubMed
Chen, D., Tang, L., and Li, J.: Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 31573180 (2010).CrossRefGoogle ScholarPubMed
Ping, J., Wu, J., Wang, Y., and Ying, Y.: Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 34, 7076 (2010).CrossRefGoogle Scholar
Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872876 (2009).CrossRefGoogle ScholarPubMed
Li, X. L., Wang, X. R., Zhang, L., Lee, S.W., and Dai, H. J., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 12291232 (2008).CrossRefGoogle ScholarPubMed
Bagri, A., Mattevi, C., Acik, M., Chabal, Y.J., Chowalla, M., and Shenoy, V.B.: Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581587 (2010).CrossRefGoogle ScholarPubMed
Loh, K. P., Bao, Q., Eda, G., and Chowalla, M.: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 10151024 (2010).CrossRefGoogle ScholarPubMed
Eda, G. and Chowalla, M.: Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 22, 23922415 (2010).CrossRefGoogle ScholarPubMed
Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W. et al. Graphene-based liquid crystal device. Nano Lett. 8, 17041708 (2008).CrossRefGoogle ScholarPubMed
Ohno, Y., Maehashi, K., Yamashiro, Y., and Matsumoto, K.: Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Lett. 9, 33183322 (2009).CrossRefGoogle ScholarPubMed
Pavlidis, V., Patila, M., Bornscheuer, U.T., Gournis, D., and Stamatis, H.: Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotech. 32, 312320 (2014).CrossRefGoogle ScholarPubMed
Dikin, D. A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., and Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457460 (2007).CrossRefGoogle ScholarPubMed
Baker, S. N. and Baker, G.A.: Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 49, 67266744 (2010).CrossRefGoogle ScholarPubMed
Liu, F., Jang, M.-H., Ha, H.D., Kim, J.-H., Cho, Y.-H., Seo, T.S.: Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater. 25, 36573662 (2013).CrossRefGoogle ScholarPubMed
Lim, C. S., Hola, K., Ambrosi, A., Zboril, R., and Pumera, M.: Graphene and carbon quantum dots electrochemistry. Electrochem. Commun. 52, 7579 (2015).CrossRefGoogle Scholar
Martin, H. J., Vazquez, L., Martinez, M.T., and Excarpa, A.: Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Adv. 4, 132139 (2014).CrossRefGoogle Scholar
Sekiya, R., Uemura, Y., Murakami, H., and Haino, T.: White-light-emitting edge-functionalized graphene quantum dots. Angew. Chem. Int. Ed. 53, 56195623 (2014).CrossRefGoogle ScholarPubMed
Mahasin, S.K.A., Ananthanarayanan, A., Huang, L., Lim, K.H., and Chen, P.: Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2, 69546960 (2014).Google Scholar
Feng, Y., Zhao, J., Yan, X., Tang, F., and Xue, Q.: Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon 66, 334339 (2016).CrossRefGoogle Scholar
Suzuki, N., Wang, Y., Elvati, P., Qu, Z.-B., Kim, K., Jiang, S., Baumeister, E., Lee, J., Yeom, B., Bahng, J.H. et al. Chiral Graphene Quantum Dots. ACS Nano 10, 17441755 (2016).CrossRefGoogle ScholarPubMed
Hola, K., Zhang, Y., Wang, Y., Giannelis, E.P., Zboril, R., and Rogach, A.L.: Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9, 590603 (2014).CrossRefGoogle Scholar
Lu, J., Yang, J., Wang, J., Lim, A., Wang, S., and Loh, K.P.: One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 3, 23672375 (2009).CrossRefGoogle ScholarPubMed
Shen, J., Zhu, Y., Yang, X., and Li, C.: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 36863699 (2012).CrossRefGoogle ScholarPubMed
Mueller, M.L., Yan, X., McGuire, J.A., Li, L.S.: Triplet States and electronic relaxation in photoexcited graphene quantum dots. Nano Lett. 10, 26792682 (2010).CrossRefGoogle ScholarPubMed
Zhu, S., Zhang, J., Qiao, C., Tang, C., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 68586860 (2011).CrossRefGoogle ScholarPubMed
Reed, M. A., Quantum Dots. Sci. Am. 1, 118123 (1993).CrossRefGoogle Scholar
Sun, H., Wu, L., Wei, W., and X: Recent advances in graphene quantum dots for sensing. Mater. Today 16, 433442 (2013).CrossRefGoogle Scholar
Zhang, M., Bai, L., Shang, W., Xie, W., Ma, H., Fu, Y., Fang, D., Sun, H., Fan, L., Han, M., et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22, 74617467 (2012).CrossRefGoogle Scholar
Gupta, S., Price, C., and Heintzman, E.: Conducting Polymer Nanostructures and Nanocomposites with Carbon Nanotubes: Hierarchical Assembly by Molecular Electrochemistry, Growth Aspects and Property Characterization. J. Nanosci. Nanotechnol. 16, 374391 (2016).CrossRefGoogle ScholarPubMed
Gupta, S., Heintzman, E., and Price, C.: Electrostatic Layer-By-Layer Self-Assembled Graphene/Multi-Walled Carbon Nanotubes Hybrid Multilayers as Efficient ’All Carbon’ Supercapacitors. J. Nanosci. Nanotechnol. 16, 47714782 (2016).CrossRefGoogle ScholarPubMed
Gupta, S., Carrizosa, S.B., McDonald, B., Jasinski, J., and Dimakis, N.: Graphene-family nanomaterials assembled with cobalt oxides and cobalt nanoparticles as hybrid supercapacitive electrodes and enzymeless glucose detection platforms. J. Mater. Res. 32, 301322 (2017).CrossRefGoogle Scholar
Gupta, S., Aberg, B., Carrizosa, S.B., and Dimakis, N.: Vanadium pentoxide nanobelt-reduced graphene oxide nanosheet as high-performance pseudocapacitive electrodes: AC impedance spectroscopy data modeling and theoretical calculations. Materials 9, 615 (2016), doi:10.3390/ma9080615.CrossRefGoogle ScholarPubMed
Gupta, S., VanMeveren, M., and Jasinski, J.: Investigating Electrochemical Properties and Interfacial Processes of Manganese Oxides/Graphene Hybrids as High-Performance Supercapacitor Electrodes. Int. J. Electrochem. Sci. 10, 1027210291 (2015).CrossRefGoogle Scholar
Gupta, S. and Wood, R.: Development of FRET biosensor based on aptamer/functionalized graphene for ultrasensitive detection of bisphenol A and discrimination from analogs. Nano-Struct. Nano-Objects 10, 131140 (2017).CrossRefGoogle Scholar
Gupta, S. and Irihamye, A.: Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry. AIP Adv. 5, 037106 (2015).CrossRefGoogle Scholar
Wu, P., Shao, Q., Hu, Y., Jin, J., Yin, Y., Zhang, H., and Cai, C.: Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 10, 86068614 (2010).CrossRefGoogle Scholar
Zeng, G., Xing, Y., Gao, J., Wang, Z., and Zhang, X.: Unconventional Layer-by-Layer Assembly of Graphene Multilayer Films for Enzyme-Based Glucose and Maltose Biosensing. Langmuir 26, 1502215026 (2010).CrossRefGoogle ScholarPubMed
Park, S., An, J., and Potts, R.J., Velamakanni, A., Murali, S., and Ruoff, R.S.: Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 30193023 (2011).CrossRefGoogle Scholar
Sheng, Z., Song, L., Zheng, J., Hu, D., He, M., Zheng, M., Gao, G., Gong, P., Zhang, P., Ma, Y. et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34, 52365243 (2013).CrossRefGoogle ScholarPubMed
Mosa, I. M., Pattammattel, A., Kadimisetty, K., Pande, P., El-Kady, M.F., Bishop, G. W., Novak, M., Kaner, R.B., Basu, A.K., Kumar, C.V. et al. Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Adv. Energy Mater. 7, 1700358 (2017), doi:10.1002/aenm.201700358.CrossRefGoogle ScholarPubMed
Pan, D., Zhang, J., Li, Z., and Wu, M.: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734738 (2010); S. Gupta, T. Smith, A. Banaszak, and J. Boeckl: Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development. Nanomaterials 7, 301-322 (2017).CrossRefGoogle ScholarPubMed
Bard, J. and Mirkin, M.V., (Eds.) Scanning Electrochemical Microscopy; Marcel Dekker: New York, USA, (2001).CrossRefGoogle Scholar
Wang, S., Cole, I.S., Zhao, D., and Li, Q.: The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale 8, 74497458 (2016).CrossRefGoogle ScholarPubMed
Efros, L. and Rosen, M.: The Electronic Structure of Semiconductor Nanocrystals. Ann. Rev. Mater. Sci. 30, 475521 (2000).CrossRefGoogle Scholar
Gupta, S. and Saxena, A.: Nanocarbon materials: Probing the curvature and topology effects using phonon spectra. J. Raman Spectrosc. 40, 11271137 (2009).CrossRefGoogle Scholar
Dresselhaus, M. S. and Eklund, P. C.: Phonons in carbon nanotubes. Adv. Phys. 49, 705814 (2000).CrossRefGoogle Scholar
Wu, B., Hou, S., Miao, Z., Zhang, C., and Ji, Y.: Layer-by-layer self-assembling gold nanorods and glucose oxidase onto carbon nanotubes functionalized sol-gel matrix for an amperometric glucose biosensor. Nanomaterials 5, 15441555 (2015).CrossRefGoogle ScholarPubMed
Laviron, E.: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 1928 (1979).CrossRefGoogle Scholar
McCreery, R. L.: Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 108, 26462687 (2008).CrossRefGoogle ScholarPubMed
Shangguan, X., Zhang, H., and Zheng, J.: Direct electrochemistry of glucose oxidase based on its direct immobilization on carbon ionic liquid electrode and glucose sensing. Electrochem. Commun. 10, 11401143 (2008).CrossRefGoogle Scholar
Razmi, H. and Rezaei, R.M.: Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosens. Bioelectron. 41, 498504 (2013).CrossRefGoogle ScholarPubMed
Huang, Y., Zhang, W., Xiao, H., and Li, G.: An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron. 21, 817821 (2005).CrossRefGoogle Scholar
Guo, S., Zhang, S., Wu, L., and Sun, S.: Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew. Chem. Int. Ed. 51, 1177011773 (2012).CrossRefGoogle ScholarPubMed
Zhang, Y., Wu, C., Zhou, X., Wu, X., Yang, Y., Wu, H., Guo, S., and Zhang, J.: Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5, 18161819 (2013).CrossRefGoogle ScholarPubMed
Gupta, S., Banaszak, A., Smith, T., and Dimakis, N.: Molecular sensitivity of metal nanoparticles decorated graphene-family nanomaterials as surface-enhanced Raman scattering (SERS) platforms. J. Raman Spectroscopy 49, 27 Dec. (2017) | https://doi.org/10.1002/jrs.5318.Google Scholar
Li, J., Tan, S.N., and Ge, H.: Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Analytical Chim. Acta 335, 137145 (1996).CrossRefGoogle Scholar
Gupta, S. and Carrizosa, S.B.: Insights into electrode/electrolyte interfacial processes and the effect of nanostructured cobalt oxides loading on graphene-based hybrids by scanning electrochemical microscopy. Appl. Phys. Lett. 109, 243903243907 (2016) and references therein.CrossRefGoogle Scholar
McGovern, W. R., Anariba, F., and McCreery, R.L.: Importance of oxides in carbon/molecule/metal molecular junctions with titanium and copper top contacts. J. Electrochem. Soc. 152, E176E183 (2005).CrossRefGoogle Scholar
Brownson, D.A.C., Kampouris, D.K., and Banks, C.E.: Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 69446976 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: File

Gupta et al. supplementary material

Gupta et al. supplementary material

Download Gupta et al. supplementary material(File)
File 153.4 KB