Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T08:00:03.724Z Has data issue: false hasContentIssue false

Growth and Properties of Dislocated Two-dimensional Layered Materials

Published online by Cambridge University Press:  25 August 2020

Rui Chen
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Jinhua Cao
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Stephen Gee
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Yin Liu*
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. Present address: Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
Jie Yao
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
*
Get access

Abstract

Two-dimensional (2D) layered materials hosting dislocations have attracted considerable research attention in recent years. In particular, screw dislocations can result in a spiral topology and an interlayer twist in the layered materials, significantly impacting the stacking order and symmetry of the layers. Moreover, the dislocations with large strain and heavily distorted atomic registry can result in a local modification of the structures around the dislocation. The dislocations thus provide a useful route to engineering optical, electrical, thermal, mechanical and catalytic properties of the 2D layered materials, which show great potential to bring new functionalities. This article presents a comprehensive review of the experimental and theoretical progress on the growth and properties of the dislocated 2D layered materials. It also offers an outlook on the future works in this promising research field.

Type
Review Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hirth, J.P., Lothe, J., Mura, T., Journal of Applied Mechanics, 50 (1983) 476-477.10.1115/1.3167075CrossRefGoogle Scholar
Burton, W., Cabrera, N., Frank, F., Nature, 163 (1949) 398-399.CrossRefGoogle Scholar
Anderson, P.M., Hirth, J.P., Lothe, J., Theory of dislocations, Cambridge University Press 2017.Google Scholar
Szot, K., Speier, W., Bihlmayer, G., Waser, R., Nature materials, 5 (2006) 312-320.CrossRefGoogle Scholar
Ran, Y., Zhang, Y., Vishwanath, A., Nature Physics, 5 (2009) 298-303.10.1038/nphys1220CrossRefGoogle Scholar
Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, J.W., Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Science, 348 (2015) 109-114.CrossRefGoogle Scholar
Sugiyama, I., Shibata, N., Wang, Z., Kobayashi, S., Yamamoto, T., Ikuhara, Y., Nature nanotechnology, 8 (2013) 266.10.1038/nnano.2013.45CrossRefGoogle Scholar
Gao, P., Yang, S., Ishikawa, R., Li, N., Feng, B., Kumamoto, A., Shibata, N., Yu, P., Ikuhara, Y., Physical review letters, 120 (2018) 267601.CrossRefGoogle Scholar
Geim, A.K., Grigorieva, I.V., Nature, 499 (2013) 419-425.CrossRefGoogle Scholar
Miró, P., Audiffred, M., Heine, T., Chemical Society Reviews, 43 (2014) 6537-6554.CrossRefGoogle Scholar
Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A., Nature Photonics, 8 (2014) 899.10.1038/nphoton.2014.271CrossRefGoogle Scholar
Zhang, L., Liu, K., Wong, A.B., Kim, J., Hong, X., Liu, C., Cao, T., Louie, S.G., Wang, F., Yang, P., Nano letters, 14 (2014) 6418-6423.10.1021/nl502961eCrossRefGoogle Scholar
Shearer, M.J., Samad, L., Zhang, Y., Zhao, Y., Puretzky, A., Eliceiri, K.W., Wright, J.C., Hamers, R.J., Jin, S., Journal of the American Chemical Society, 139 (2017) 3496-3504.CrossRefGoogle Scholar
Suzuki, R., Sakano, M., Zhang, Y., Akashi, R., Morikawa, D., Harasawa, A., Yaji, K., Kuroda, K., Miyamoto, K., Okuda, T., Nature nanotechnology, 9 (2014) 611.CrossRefGoogle Scholar
Liu, Y., Wang, J., Kim, S., Sun, H., Yang, F., Fang, Z., Tamura, N., Zhang, R., Song, X., Wen, J., Xu, B.Z., Wang, M., Lin, S., Yu, Q., Tom, K.B., Deng, Y., Turner, J., Chan, E., Jin, D., Ritchie, R.O., Minor, A.M., Chrzan, D.C., Scott, M.C., Yao, J., Nature, 570 (2019) 358-362.Google Scholar
Sutter, P., Wimer, S., Sutter, E., Nature, 570 (2019) 354-357.CrossRefGoogle Scholar
Ly, T.H., Zhao, J., Kim, H., Han, G.H., Nam, H., Lee, Y.H., Advanced Materials, 28 (2016) 7723-7728.CrossRefGoogle Scholar
Sarma, P.V., Kayal, A., Sharma, C.H., Thalakulam, M., Mitra, J., Shaijumon, M.M., ACS Nano, 13 (2019) 10448-10455.CrossRefGoogle Scholar
Liu, L., Sun, Y., Cui, X., Qi, K., He, X., Bao, Q., Ma, W., Lu, J., Fang, H., Zhang, P., Zheng, L., Yu, L., Singh, D.J., Xiong, Q., Zhang, L., Zheng, W., Nature Communications, 10 (2019) 4472.CrossRefGoogle Scholar
Burton, W.-K., Cabrera, N., Frank, F., Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243 (1951) 299-358.Google Scholar
Woodruff, D., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2015) 20140230.CrossRefGoogle Scholar
Meng, F., Morin, S.A., Forticaux, A., Jin, S., Accounts of Chemical Research, 46 (2013) 1616-1626.CrossRefGoogle Scholar
Fan, X., Zhao, Y., Zheng, W., Li, H., Wu, X., Hu, X., Zhang, X., Zhu, X., Zhang, Q., Wang, X., Yang, B., Chen, J., Jin, S., Pan, A., Nano Letters, 18 (2018) 3885-3892.10.1021/acs.nanolett.8b01210CrossRefGoogle Scholar
Nie, Y., Barton, A.T., Addou, R., Zheng, Y., Walsh, L.A., Eichfeld, S.M., Yue, R., Cormier, C.R., Zhang, C., Wang, Q., Nanoscale, 10 (2018) 15023-15034.CrossRefGoogle Scholar
Morin, S.A., Jin, S., Nano Letters, 10 (2010) 3459-3463.CrossRefGoogle Scholar
Huang, X., Chumlyakov, Y.I., Ramirez, A.G., Nanotechnology, 23 (2012) 125601.CrossRefGoogle Scholar
Zhong, X., Shtukenberg, A.G., Hueckel, T., Kahr, B., Ward, M.D., Crystal Growth & Design, 18 (2018) 318-323.CrossRefGoogle Scholar
O'Brien, M., McEvoy, N., Hanlon, D., Hallam, T., Coleman, J.N., Duesberg, G.S., Scientific Reports, 6 (2016) 19476.CrossRefGoogle Scholar
Wu, J., Hu, Z., Jin, Z., Lei, S., Guo, H., Chatterjee, K., Zhang, J., Yang, Y., Li, B., Liu, Y., Advanced Materials Interfaces, 3 (2016) 1600383.CrossRefGoogle Scholar
Fan, X., Jiang, Y., Zhuang, X., Liu, H., Xu, T., Zheng, W., Fan, P., Li, H., Wu, X., Zhu, X., ACS nano, 11 (2017) 4892-4898.CrossRefGoogle Scholar
Barman, P.K., Sarma, P.V., Shaijumon, M., Kini, R., Scientific reports, 9 (2019) 1-7.Google Scholar
Zhang, X., Hu, K., Li, Y., Wei, G., Stern, N.P., Pan, M., Li, X., Luo, H., Liu, L., arXiv preprint arXiv:1906.07076, (2019).Google Scholar
Fan, X., Ji, Z., Fei, R., Zheng, W., Liu, W., Zhu, X., Chen, S., Yang, L., Liu, H., Pan, A., Nano Letters, 20 (2020) 2667-2673.CrossRefGoogle Scholar
Zhuang, A., Li, J.J., Wang, Y.C., Wen, X., Lin, Y., Xiang, B., Wang, X., Zeng, J., Angewandte Chemie International Edition, 53 (2014) 6425-6429.Google Scholar
Morin, S.A., Forticaux, A., Bierman, M.J., Jin, S., Nano Letters, 11 (2011) 4449-4455.CrossRefGoogle Scholar
Liu, L., Sun, Y., Cui, X., Qi, K., He, X., Bao, Q., Ma, W., Lu, J., Fang, H., Zhang, P., Nature communications, 10 (2019) 1-10.Google Scholar
Karma, A., Plapp, M., Physical Review Letters, 81 (1998) 4444-4447.CrossRefGoogle Scholar
Chen, L., Liu, B., Abbas, A.N., Ma, Y., Fang, X., Liu, Y., Zhou, C., Acs Nano, 8 (2014) 11543-11551.CrossRefGoogle Scholar
Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J., Watanabe, K., Taniguchi, T., Kaxiras, E., Nature, (2018).Google ScholarPubMed
Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., Nature, 556 (2018) 43-50.CrossRefGoogle Scholar
Naik, M.H., Jain, M., Physical Review Letters, 121 (2018) 266401.CrossRefGoogle Scholar
Jin, C., Regan, E.C., Yan, A., Utama, M.I.B., Wang, D., Zhao, S., Qin, Y., Yang, S., Zheng, Z., Shi, S., Nature, (2019) 1.Google ScholarPubMed
Sharpe, A.L., Fox, E.J., Barnard, A.W., Finney, J., Watanabe, K., Taniguchi, T., Kastner, M.A., Goldhaber-Gordon, D., Science, 365 (2019) 605-608.10.1126/science.aaw3780CrossRefGoogle Scholar
Kennes, D.M., Xian, L., Claassen, M., Rubio, A., Nature Communications, 11 (2020) 1124.CrossRefGoogle Scholar
Eshelby, J., Journal of Applied Physics, 24 (1953) 176-179.CrossRefGoogle Scholar
Eshelby, J., Philosophical Magazine, 3 (1958) 440-447.10.1080/14786435808244565CrossRefGoogle Scholar
Bierman, M.J., Lau, Y.A., Kvit, A.V., Schmitt, A.L., Jin, S., Science, 320 (2008) 1060-1063.CrossRefGoogle Scholar
Zhu, J., Peng, H., Marshall, A., Barnett, D., Nix, W., Cui, Y., Nature nanotechnology, 3 (2008) 477.CrossRefGoogle Scholar
Wu, H., Meng, F., Li, L., Jin, S., Zheng, G., ACS nano, 6 (2012) 4461-4468.CrossRefGoogle Scholar
Jin, S., Bierman, M.J., Morin, S.A., The Journal of Physical Chemistry Letters, 1 (2010) 1472-1480.CrossRefGoogle Scholar
Tizei, L., Craven, A., Zagonel, L., Tencé, M., Stéphan, O., Chiaramonte, T., Cotta, M., Ugarte, D., Physical review letters, 107 (2011) 195503.CrossRefGoogle Scholar
Fang, Z., Liu, Y., Gee, S., Lin, S., Koyama, S., So, C., Luo, F., Chen, R., Tang, B., Yao, J., Chemistry of Materials, (2019).Google Scholar
Li, Y., Rao, Y., Mak, K.F., You, Y., Wang, S., Dean, C.R., Heinz, T.F., Nano letters, 13 (2013) 3329-3333.CrossRefGoogle Scholar
Schaibley, J.R., Yu, H., Clark, G., Rivera, P., Ross, J.S., Seyler, K.L., Yao, W., Xu, X., Nature Reviews Materials, 1 (2016) 16055.CrossRefGoogle Scholar
Mak, K.F., He, K., Shan, J., Heinz, T.F., Nature Nanotechnology, 7 (2012) 494-498.CrossRefGoogle Scholar
Zhu, Z.Y., Cheng, Y.C., Schwingenschlögl, U., Physical Review B, 84 (2011) 153402.CrossRefGoogle Scholar
Cheiwchanchamnangij, T., Lambrecht, W.R.L., Physical Review B, 85 (2012) 205302.CrossRefGoogle Scholar
Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W., Physical Review Letters, 108 (2012) 196802.CrossRefGoogle Scholar
Sarma, P.V., Patil, P.D., Barman, P.K., Kini, R.N., Shaijumon, M.M., RSC Advances, 6 (2016) 376-382.CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., Ryu, S., ACS Nano, 4 (2010) 2695-2700.CrossRefGoogle Scholar
Puretzky, A.A., Liang, L., Li, X., Xiao, K., Wang, K., Mahjouri-Samani, M., Basile, L., Idrobo, J.C., Sumpter, B.G., Meunier, V., Geohegan, D.B., ACS Nano, 9 (2015) 6333-6342.CrossRefGoogle Scholar
Zhan, H., Zhang, G., Yang, C., Gu, Y., The Journal of Physical Chemistry C, 122 (2018) 7605-7612.CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Physical Review Letters, 105 (2010) 136805.CrossRefGoogle Scholar
Sarma, P.V., Patil, P.D., Barman, P.K., Kini, R.N., Shaijumon, M.M., RSC advances, 6 (2016) 376-382.CrossRefGoogle Scholar
Xu, F., Yu, H., Sadrzadeh, A., Yakobson, B.I., Nano letters, 16 (2016) 34-39.CrossRefGoogle Scholar
Wu, F., Zhang, R.-X., Das Sarma, S., Physical Review Research, 2 (2020) 022010.CrossRefGoogle Scholar
Zhou, X., Gan, L., Tian, W., Zhang, Q., Jin, S., Li, H., Bando, Y., Golberg, D., Zhai, T., Advanced Materials, 27 (2015) 8035-8041.CrossRefGoogle Scholar
Yu, P., Yu, X., Lu, W., Lin, H., Sun, L., Du, K., Liu, F., Fu, W., Zeng, Q., Shen, Z., Jin, C., Wang, Q.J., Liu, Z., Advanced Functional Materials, 26 (2016) 137-145.CrossRefGoogle Scholar
Zhang, N., Carrez, P., Shahsavari, R., ACS applied materials & interfaces, 9 (2017) 1496-1506.CrossRefGoogle Scholar
Zhan, H., Zhang, G., Yang, C., Gu, Y., Nanoscale, 10 (2018) 18961-18968.CrossRefGoogle ScholarPubMed
Björkman, T., Gulans, A., Krasheninnikov, A.V., Nieminen, R.M., Physical review letters, 108 (2012) 235502.CrossRefGoogle Scholar
Björkman, T., Gulans, A., Krasheninnikov, A., Nieminen, R., Journal of Physics: Condensed Matter, 24 (2012) 424218.Google Scholar
Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S., Nature, 430 (2004) 870-873.CrossRefGoogle Scholar
Gibb, A.L., Alem, N., Chen, J.-H., Erickson, K.J., Ciston, J., Gautam, A., Linck, M., Zettl, A., Journal of the American Chemical Society, 135 (2013) 6758-6761.CrossRefGoogle Scholar
Van Der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.-H., Heinz, T.F., Reichman, D.R., Muller, D.A., Hone, J.C., Nature materials, 12 (2013) 554-561.CrossRefGoogle Scholar
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.-C., Nano letters, 13 (2013) 2615-2622.CrossRefGoogle Scholar
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B.I., Idrobo, J.-C., Ajayan, P.M., Lou, J., Nature materials, 12 (2013) 754-759.CrossRefGoogle Scholar
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I.I., Batzill, M., Nature nanotechnology, 5 (2010) 326.CrossRefGoogle Scholar
Huang, P.Y., Ruiz-Vargas, C.S., Van Der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Nature, 469 (2011) 389-392.CrossRefGoogle Scholar
Yazyev, O.V., Louie, S.G., Physical Review B, 81 (2010) 195420.CrossRefGoogle Scholar
Liu, Y., Zou, X., Yakobson, B.I., ACS nano, 6 (2012) 7053-7058.CrossRefGoogle Scholar
Zou, X., Liu, Y., Yakobson, B.I., Nano letters, 13 (2013) 253-258.CrossRefGoogle Scholar
Alden, J.S., Tsen, A.W., Huang, P.Y., Hovden, R., Brown, L., Park, J., Muller, D.A., McEuen, P.L., Proceedings of the National Academy of Sciences, 110 (2013) 11256-11260.Google Scholar
Butz, B., Dolle, C., Niekiel, F., Weber, K., Waldmann, D., Weber, H.B., Meyer, B., Spiecker, E., Nature, 505 (2014) 533-537.CrossRefGoogle Scholar
Weston, A., Zou, Y., Enaldiev, V., Summerfield, A., Clark, N., Zólyomi, V., Graham, A., Yelgel, C., Magorrian, S., Zhou, M., Nature Nanotechnology, (2020) 1-6.Google Scholar
Kisslinger, F., Ott, C., Heide, C., Kampert, E., Butz, B., Spiecker, E., Shallcross, S., Weber, H.B., Nature Physics, 11 (2015) 650-653.CrossRefGoogle Scholar
Chen, G., Sharpe, A.L., Gallagher, P., Rosen, I.T., Fox, E.J., Jiang, L., Lyu, B., Li, H., Watanabe, K., Taniguchi, T., Jung, J., Shi, Z., Goldhaber-Gordon, D., Zhang, Y., Wang, F., Nature, 572 (2019) 215-219.CrossRefGoogle Scholar
Chen, G., Sharpe, A.L., Fox, E.J., Zhang, Y.-H., Wang, S., Jiang, L., Lyu, B., Li, H., Watanabe, K., Taniguchi, T., Shi, Z., Senthil, T., Goldhaber-Gordon, D., Zhang, Y., Wang, F., Nature, 579 (2020) 56-61.CrossRefGoogle Scholar
Seyler, K.L., Rivera, P., Yu, H., Wilson, N.P., Ray, E.L., Mandrus, D.G., Yan, J., Yao, W., Xu, X., Nature, 567 (2019) 66-70.CrossRefGoogle Scholar
Jin, C., Regan, E.C., Yan, A., Iqbal Bakti Utama, M., Wang, D., Zhao, S., Qin, Y., Yang, S., Zheng, Z., Shi, S., Watanabe, K., Taniguchi, T., Tongay, S., Zettl, A., Wang, F., Nature, 567 (2019) 76-80.CrossRefGoogle Scholar
Hu, G., Ou, Q., Si, G., Wu, Y., Wu, J., Dai, Z., Krasnok, A., Mazor, Y., Zhang, Q., Bao, Q., Qiu, C.-W., Alù, A., Nature, 582 (2020) 209-213.CrossRefGoogle Scholar
Engheta, N., Pelet, P., Optics Letters, 14 (1989) 593-595.CrossRefGoogle Scholar
Wang, X., Tang, J., Xia, X., He, C., Zhang, J., Liu, Y., Wan, C., Fang, C., Guo, C., Yang, W., Science advances, 5 (2019) eaaw8904.CrossRefGoogle Scholar
Atanasov, V., Saxena, A., Physical Review B, 92 (2015) 035440.CrossRefGoogle Scholar
Lee, S., Hippalgaonkar, K., Yang, F., Hong, J., Ko, C., Suh, J., Liu, K., Wang, K., Urban, J.J., Zhang, X., Science, 355 (2017) 371-374.CrossRefGoogle ScholarPubMed