Published online by Cambridge University Press: 02 August 2017
Thin films of NbO2 are synthesized by oxide molecular-beam epitaxy on (001) MgF2 substrates, which are isostructural (rutile structure) with NbO2. Two growth parameters are systematically varied in order to identify appropriate growth conditions: growth temperature and the partial pressure of O2 during film growth. θ-2θ X-ray diffraction measurements identify two dominant phases in this system at background oxygen pressures in the (0.2–6)×10–7 Torr range: rutile NbO2 is favored at higher growth temperature, while Nb2O5 forms at lower growth temperature. Electrical resistivity measurements were made between 350 K and 675 K on three epitaxial NbO2 films in a nitrogen ambient. These measurements show that NbO2 films grown in higher partial pressures of molecular oxygen have larger temperature-dependent changes in electrical resistivity and higher resistivity at room temperature.