Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T18:58:37.820Z Has data issue: false hasContentIssue false

Growth of NbO2 by Molecular-Beam Epitaxy and Characterization of its Metal-Insulator Transition

Published online by Cambridge University Press:  02 August 2017

Lindsey E. Noskin*
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, U.S.A.
Ariel Seidner H.
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, U.S.A.
Darrell G. Schlom
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, U.S.A. Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY14853, U.S.A.
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thin films of NbO2 are synthesized by oxide molecular-beam epitaxy on (001) MgF2 substrates, which are isostructural (rutile structure) with NbO2. Two growth parameters are systematically varied in order to identify appropriate growth conditions: growth temperature and the partial pressure of O2 during film growth. θ-2θ X-ray diffraction measurements identify two dominant phases in this system at background oxygen pressures in the (0.2–6)×10–7 Torr range: rutile NbO2 is favored at higher growth temperature, while Nb2O5 forms at lower growth temperature. Electrical resistivity measurements were made between 350 K and 675 K on three epitaxial NbO2 films in a nitrogen ambient. These measurements show that NbO2 films grown in higher partial pressures of molecular oxygen have larger temperature-dependent changes in electrical resistivity and higher resistivity at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Imada, M., Fujimori, A., and Tokura, Y., “Metal-Insulator Transitions,” Rev. Mod. Phys. 70, 1039 (1998).Google Scholar
Huon, A., Lang, A, Saldana-Greco, D., Lim, J, Moon, E., Rappe, A., Taheri, M., and May, S., “Electronic Transition Above Room Temperature in CaMn7O12 Films,” Appl. Phys. Lett. 107, 142901 (2015).CrossRefGoogle Scholar
Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., “Insulator-Metal Transition and Giant Magnetoresistance in La1-xSrxMnO3,” Phys. Rev. B 51, 103109 (1995).CrossRefGoogle Scholar
Belanger, G., Destry, J. and Perluzzo, G., “Electron-Transport in Single-Crystals of Niobium Dioxide,” Can. J. Phys. 52, 2272 (1974).Google Scholar
Cao, G., McCall, S., Shepard, M., Crow, J., and Guertin, R., “Magnetic and Transport Properties of Single-Crystal Ca2RuO4: Relationship to Superconducting Sr2RuO4,” Phys. Rev. B 56, R2916R2919 (1997).Google Scholar
Okinaka, H., Kosuge, K., Kachi, S., Nagasawa, K., Bando, Y. and Takada, T., “Electrical Properties of V8O15 Single Crystal,” Phys. Lett. 33A, 370371 (1970).CrossRefGoogle Scholar
Feinleib, J. and Paul, W., “Semiconductor-To-Metal Transition in V2O3,” Phys. Rev. 155, 842855 (1967).Google Scholar
Fujioka, J., Ishiwata, S., Kaneko, Y., Taguchi, Y. and Tokura, Y., “Variation of Charge Dynamics Upon the Helimagnetic and Metal-Insulator Transitions for Perovskite AFeO3 (A = Sr and Ca),” Phys. Rev. B 85, 155141–2 (2012).Google Scholar
Pérez-Cacho, J., Blasco, J., García, J., Castro, M. and Stankiewicz, J., “Study of the Phase Transitions in SmNiO3,” J. Phys. Condens. Matter 11, 405415 (1999).CrossRefGoogle Scholar
Bartwal, K. and Srivastava, O., “Studies of Metal-Insulator-Transition in TiSxSe2−x Single-Crystals,” Phase Trans. 20, 7381 (1990).Google Scholar
Ladd, L. A. and Paul, W., “Optical and Transport Properties of High Quality Crystals of V2O4 Near Metallic Transition Temperature,” Solid State Commun. 7, 425428 (1969).Google Scholar
Isobe, M., Koishi, S., Kouno, N., Yamura, J., Yamauchi, T., Hirotada, H., Yagi, T., and Ueda, Y., “Observation of Metal–Insulator Transition in Hollandite Vanadate, K2V8O16,” J. Phys. Soc. Jpn. 75, 073801–2 (2006).Google Scholar
Matuura, M., Hiraka, H., Yamada, K., and Endoh, Y., “Magnetic Phase Diagram and Metal-Insulator Transition of NiS2−xSex,” J. Phys. Soc. Jpn. 69, 15031508 (2000).Google Scholar
Murakami, M., “Anisotropy of Electrical Conduction in Iron Sulfide Single Crystal,” J. Phys. Soc. 16, 187195 (1961).Google Scholar
Onoda, M., “Phase Transitions of Ti3O5,” J. Solid State Chem. 136, 6773 (1998).CrossRefGoogle Scholar
Massenet, O., Since, J., Mercier, J., Avignon, M., Buder, R., and Nguyen, V., “Magnetic and Electric Properties of BaVS3 and BaVxTi1-xS3,” J. Phys. Chem. Solids 40, 573577 (1979).CrossRefGoogle Scholar
Miles, P.A., Westphal, W.B. and von Hippel, A., “Dielectric Spectroscopy of FerroMagnetic Semiconductors,” Rev. Mod. Phys. 29, 279307 (1957).Google Scholar
Khalifah, P., Osborn, R., Huang, Q., Zandbergen, H., Jin, R., Liu, Y., Mandrus, D., and Cava, R., “Orbital Ordering Transition in La4Ru2O10,” Science 297, 2237 (2002).Google Scholar
Shin, S.H., Chandrashekhar, G.V., Loehman, R.E. and Honig, J.M., “Thermoelectric Effects in Pure and V-Doped Ti2O3 Single-Crystals,” Phys. Rev. B 8, 13641372 (1973).Google Scholar
Andreev, V.N. and Klimov, V.A., “Specific Features of the Electrical Conductivity of V4O7 Single-Crystals,” Phys. Solid State 51, 22352240 (2009).Google Scholar
Andreev, V.N. and Klimov, V.A., “Specific Features of Electrical Conductivity of V3O5 Single-Crystals,” Phys. Solid State 53, 24242430 (2011).Google Scholar
Kachi, S., Kosuge, K. and Okinaka, H., “Metal-Insulator Transition in VnO2n–1,” J. Solid State Chem. 6, 258270 (1973).Google Scholar
Lakkis, S., Schlenker, C., Chakraverty, B.K. and Buder, R., “Metal-Insulator Transitions in Ti4O7 Single-Crystals Crystal Characterization, Specific-Heat, and Electron-Paramagnetic Resonance,” Phys. Rev. B 14, 14291440 (1976).Google Scholar
Yamaguchi, S., Okimoto, Y., Taniguchi, H. and Tokura, Y., “Spin-State Transition and High-Spin Polarons in LaCoO3,” Phys. Rev. B 53, R2926R2929 (1996).Google Scholar
Yonezawa, S., Muraoka, Y., Ueda, Y. and Hiroi, Z., “Epitaxially Strain Effects on the Metal-Insulator Transition in V2O3 Thin Films,” Solid State Commun. 129, 245248 (2004).Google Scholar
Penney, T., Shafer, M.W. and Torrance, J.B., “Insulator-Metal Transition and Long-Range Magnetic Order in EuO,” Phys. Rev. B 5, 36693674 (1972).Google Scholar
Tian, Z., Kohama, Y., Tomita, T., Ishizuka, H., Hsieh, T., Ishikawa, J., Kindo, K., Balents, L. and Nakatsuji, S., “Field-Induced Quantum Metal–Insulator Transition in the Pyrochlore Iridate Nd2Ir2O7,” Nat. Phys. 12, (2016).CrossRefGoogle Scholar
Tashman, J., Lee, J., Paik, H., Moyer, J., Misra, R., Mundy, J., Spila, T., Merz, T., Schubert, J., Muller, D., Schiffer, P. and Schlom, D., “Epitaxial Growth of VO2 by Periodic Annealing,” Appl. Phys. Lett. 104, 063104 (2014).Google Scholar
Savitzky, A. and Golay, M., “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36, 1627 (1964).Google Scholar
Sakata, T., Sakata, K., and Nishida, I., “Study of Phase Transition in NbO2,” Phys. Stat. Sol. 20, K155 (1967).Google Scholar
Shukla, N., Thathachary, A.V., Agrawal, A., Paik, H., Aziz, A., Schlom, D.G., Gupta, S.K., Engel-Herbert, R., Datta, S., “A Steep-Slope Transistor Based on Abrupt Electronic Phase Transition,” Nat. Commun. 6, 15 (2015).Google Scholar
Schlom, D.G., Chen, L.Q., Pan, X.Q., Schmehl, A., and Zurbuchen, M.A., “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91, 24292454 (2008).CrossRefGoogle Scholar
Vassighi, A. and Manoj, S., “Thermal and Power Management of Integrated Circuits,” Springer Science and Business Media, New York, NY, U.S.A. 149175 (2006).Google Scholar
Vassilyeva, A., Eglitis, R., Kotomin, E., and Dauletbekova, A., “Ab Initio Calculations of the Atomic and Electronic Structure of MgF2(011) and (111) Surfaces,” Cent. Eur. J. Phys. 9, 515518 (2011).Google Scholar
Marinder, B., “Studies on Rutile-Type Phases in Mixed Transition Metal Dioxides. II.,” Acta Chem. Scand. 16, 293 (1962).CrossRefGoogle Scholar