Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T08:48:21.211Z Has data issue: false hasContentIssue false

Growth of single-walled carbon nanotube at a low temperature by alcohol catalytic chemical vapor deposition using Ru catalysts

Published online by Cambridge University Press:  09 January 2018

Takayuki Fujii*
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, Japan.
Takuya Okada
Affiliation:
Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, Japan.
Takahiro Saida
Affiliation:
Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, Japan.
Shigeya Naritsuka
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, Japan.
Takahiro Maruyama
Affiliation:
Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, Japan.
Get access

Abstract

Growth of single-walled carbon nanotube (SWCNT) was achieved by an alcohol catalytic chemical vapor deposition (CVD) mechanism that was conducted in a high vacuum using Ru catalysts. By optimizing the ethanol pressure, SWCNTs can grow in a wide range of temperature between 500 °C and 900 °C. Both the yield and crystalline quality of SWCNTs reached their maxima at 700 °C. Significantly, the SWCNT growth was achieved even at 450 °C, which was much lower than the growth temperatures that were required for SWCNT growth using Ru catalysts previously. Raman measurements exhibited that the diameter distribution of the SWCNTs that were grown at 450 °C was quite narrow and (11, 4) nanotubes were dominant. The observations of transmission electron microscope (TEM) suggested that the size of the Ru particles were larger than the diameter of SWCNT. Such a relation was similar to the relation observed in the growth of SWCNTs using Pt catalysts.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
Javey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, H., Nature 424, 654 (2003).CrossRefGoogle Scholar
Hong, S. and Myung, S., Nat. Nanotechnol. 2, 207 (2007).Google Scholar
Hone, J., Whitney, M., Piskoti, C. and Zettl, A., Phys. Rev. B 59, R2514 (1999).Google Scholar
Nayak, S., Behura, S. K., Bhattacharjee, S., Singh, B. P., Jani, O., Mukhopadhyay, I., J. Nanosci. Nanotechnol. 14, 2816 (2014).Google Scholar
Nayak, S., Behura, S. K., Bhattacharjee, S., Singh, B. P., Mukhopadhyay, I., Polym. Comp. 37, 2860 (2016).CrossRefGoogle Scholar
Tans, S. J., Verschueren, A. R. M. and Dekker, C., Nature 393, 49 (1998).Google Scholar
Wind, S. J., Appenzeller, J., Martel, R., Derycke, V. and Avouris, Ph., Appl. Phys. Lett.80, 3817 (2002).Google Scholar
Naeemi, A. and Meindl, J. D., IEEE Trans. Electron Devices 54, 26 (2009).Google Scholar
Srivastava, N., Li, H., Kreupl, F. and Banerjee, K., IEEE Trans. Nanotechnol. 8, 542 (2009).CrossRefGoogle Scholar
Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T. and Smalley, R. E., Chem. Phys. Lett. 260, 471 (1996).Google Scholar
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S. and Kohno, M., Chem. Phys. Lett. 360, 229 (2002).Google Scholar
Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M. and Iijima, S., Science 306, 1362 (2004).CrossRefGoogle Scholar
Kaneko, A., Yamada, K., Kumahara, R., Kato, H. and Homma, Y., J. Phys. Chem. C 116, 26060 (2012).Google Scholar
Ago, H., Imamura, S., Okazaki, T., Saito, T., Yumura, M. and Tsuji, M., J. Phys. Chem. B 109, 10035 (2005).Google Scholar
Jorio, A., Saito, R., Hahner, J. H., Liever, C. M., Hunter, M., McClure, T., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. Lett. 86, 1118 (2001).Google Scholar
Matsuda, Y., Tahir-Kheli, J. and Goddard, W. A. III, J. Phys. Chem. Lett. 1, 2946 (2010).CrossRefGoogle Scholar
Cheung, C. L., Kurtz, A., Park, H. and Liever, C.M., J. Phys. Chem. B 106, 2429 (2002).CrossRefGoogle Scholar
Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D. and Dai, H., J. Phys. Chem. B 105, 11424 (2001).Google Scholar
Futaba, D.N., Hata, K., Namai, T., Yamada, T., Mizuno, K., Hayamizu, Y., Yumura, M. and Iijima, S., J. Phys. Chem. B 110, 8035 (2006).Google Scholar
Navas, H., Picher, M., Andrieux-Ledier, A., Fossard, F., Michel, T., Kozawa, A. and Maruyama, T., Anglaret, E., Loiseau, A. and Jourdain, V., ACS Nano 11, 3081 (2017).Google Scholar
Lu, J. Q., Kopley, T. E., Moll, N., Roitman, D., Chamberlin, D., Fu, Q., Liu, J., Russell, T. P., Rider, D. A., Manners, I. and Winnik, M.A., Chem. Mater. 17, 2227 (2005).CrossRefGoogle Scholar
Li, N., Wang, X., Ren, F., Haller, G. L. and Pfefferle, L.D., J. Phys. Chem. C 113, 10070 (2009).Google Scholar
Amama, P. B., Pint, C. L., McJilton, L., Kim, S. M., Stach, E. A., Murray, P. T., Hauge, R. H. and Maruyama, B., Nano Lett. 9, 44 (2009).Google Scholar
Sakurai, S., Inaguma, M., Futaba, D.N., Yumura, M. and Hata, K., Small 9, 3584 (2013).Google Scholar
Maruyama, T., Mizutani, Y., Naritsuka, S. and Iijima, S., Mater. Express 1, 267 (2011).Google Scholar
Fukuoka, N., Mizutani, Y., Naritsuka, S., Maruyama, T. and Iijima, S., Jpn. J. Appl. Phys. 51, 06FD23 (2012).Google Scholar
Kondo, H., Fukuoka, N., Ghosh, R., Naritsuka, S., Maruyama, T. and Iijima, S., Jpn. J. Appl. Phys. 52, 06GD02 (2013).Google Scholar
Maruyama, T., Kondo, H., Ghosh, R., Kozawa, A., Naritsuka, S., Iizumi, Y., Okazaki, T. and Iijima, S., Carbon 96, 6 (2016).Google Scholar
Fujii, T., Kiribayashi, H., Saida, T., Narisyuka, S. and Maruyama, T., Diamond Relat. Mater. 77, 97 (2017).Google Scholar
Reich, S., Thomsen, C. and Maultzsch, J., Carbon Nanotubes, Chp. 8, pp. 141, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2004).Google Scholar
Nugraha, A. R., Saito, R., Sato, K., Araujo, P. T., Jorio, A., Dresslehaus, M. S., Appl. Phys. Lett. 97, 091905 (2010).Google Scholar
Sato, K., Saito, R., Jiang, J., Dresselhaus, G., Dresselhaus, M. S., Phys. Rev. B 76, 195446 (2007).Google Scholar
Qian, Y., Wang, C., Ren, G. and Huang, B., Appl. Surf. Sci. 256, 4038 (2010).Google Scholar
Sung, C. M. and Tai, M. F., Int. J. Ref. Met. Hard Mater. 15, 237 (1997).Google Scholar