Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T14:29:35.604Z Has data issue: false hasContentIssue false

HgTe, the Most Tunable Colloidal Material: from the Strong Confinement Regime to THz Material

Published online by Cambridge University Press:  29 April 2018

Clément Livache
Affiliation:
Sorbonne Université, UPMC Univ. Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005Paris, France Laboratoire de Physique et d’Étude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
Nicolas Goubet
Affiliation:
Sorbonne Université, UPMC Univ. Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005Paris, France Laboratoire de Physique et d’Étude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
Bertille Martinez
Affiliation:
Sorbonne Université, UPMC Univ. Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005Paris, France Laboratoire de Physique et d’Étude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
Eva Izquierdo
Affiliation:
Laboratoire de Physique et d’Étude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
Charlie Greboval
Affiliation:
Sorbonne Université, UPMC Univ. Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005Paris, France
Sandrine Ithurria
Affiliation:
Laboratoire de Physique et d’Étude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
Emmanuel Lhuillier*
Affiliation:
Sorbonne Université, UPMC Univ. Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005Paris, France
*
*(Email: el@insp.upmc.fr)
Get access

Abstract

HgTe nanocrystals are extremely interesting materials to obtain a highly tunable absorption spectrum in the infrared range. Here, we discuss the two extreme cases of strongly confined and barely confined HgTe nanocrystals. We discuss the synthesis and optoelectronic properties of HgTe 2D nanoplatelets where the confinement energy can be as large as 1.5 eV. This material presents enhanced (mostly narrower) light emitting properties compared to spherical nanocrystals emitting at the same wavelength. Moreover, absorption spectra, majority carriers and time response can be tuned by carefully choosing the surface chemistry and applying a well-chosen gate bias. HgTe can also be used to explore the effect of vanishing confinement and to obtain quasi bulk properties with tunable absorption in the THz, up to 150 µm.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 87068715 (1993).CrossRefGoogle Scholar
Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A. P., Nature 404, 5961 (2000).CrossRefGoogle Scholar
Nasilowski, M., Mahler, B., Lhuillier, E., Ithurria, S., and Dubertret, B., Chem. Rev. 116, 1093410982 (2016).CrossRefGoogle Scholar
Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., and Dubertret, B., Acc. Chem. Res. 48, 2230 (2015).CrossRefGoogle Scholar
Adinolfi, V. and Sargent, E. H., Nature 542, 324327 (2017).CrossRefGoogle Scholar
Kovalenko, M. V., Kaufmann, E., Pachinger, D., Roither, J., Huber, M., Stangl, J., Hesser, G., Schäffler, F., and Heiss, W., J. Am. Chem. Soc. 128, 35163517 (2006).CrossRefGoogle Scholar
Keuleyan, S., Lhuillier, E., Brajuskovic, V., and Guyot-Sionnest, P., Nat. Photonics 5, 489493 (2011).CrossRefGoogle Scholar
Lhuillier, E., Scarafagio, M., Hease, P., Nadal, B., Aubin, H., Xu, X. Z., Lequeux, N., Patriarche, G., Ithurria, S., and Dubertret, B., Nano Lett. 16, 12821286 (2016).CrossRefGoogle Scholar
Konstantatos and Sargent, Collidal Quantum Dot Optoelectronics and Photovoltaics (Cambridge University Press, 2013).Google Scholar
Wang, C., Shim, M., and Guyot-Sionnest, P., Science 291, 23902392 (2001).CrossRefGoogle Scholar
Norris, D. J., Efros, A. L., and Erwin, S. C., Science 319, 17761779 (2008).CrossRefGoogle Scholar
Jeong, K. S., Deng, Z., Keuleyan, S., Liu, H., and Guyot-Sionnest, P., J. Phys. Chem. Lett. 5, 11391143 (2014).CrossRefGoogle Scholar
Yoon, B., Jeong, J., and Jeong, K. S., J. Phys. Chem. C 120, 2206222068 (2016).CrossRefGoogle Scholar
Shen, G. and Guyot-Sionnest, P., J. Phys. Chem. C 120, 1174411753 (2016).CrossRefGoogle Scholar
Tang, X., fu Wu, G., and Lai, K. W. C., J. Mater. Chem. C 5, 362369 (2016).CrossRefGoogle Scholar
Deng, Z., Jeong, K. S., and Guyot-Sionnest, P., ACS Nano 8, 1170711714 (2014).CrossRefGoogle Scholar
Sahu, A., Qi, L., Kang, M. S., Deng, D., and Norris, D. J., J. Am. Chem. Soc. 133, 65096512 (2011).CrossRefGoogle Scholar
Sahu, A., Khare, A., Deng, D. D., and Norris, D. J., Chem. Commun. 48, 54585460 (2012).CrossRefGoogle Scholar
Chen, T., Reich, K. V., Kramer, N. J., Fu, H., Kortshagen, U. R., and Shklovskii, B. I., Nat. Mater. 15, 299303 (2016).CrossRefGoogle Scholar
Zhang, H., Zhang, R., Schramke, K. S., Bedford, N. M., Hunter, K., Kortshagen, U. R., and Nordlander, P., ACS Photonics 4, 963970 (2017).CrossRefGoogle Scholar
Gresback, R., Kramer, N. J., Ding, Y., Chen, T., Kortshagen, U. R., and Nozaki, T., ACS Nano 8, 56505656 (2014).CrossRefGoogle Scholar
Buonsanti, R., Llordes, A., Aloni, S., Helms, B. A., and Milliron, D. J., Nano Lett. 11, 47064710 (2011).CrossRefGoogle Scholar
Delerue, C., Nano Lett. 17, 75997605 (2017).CrossRefGoogle Scholar
Della Gaspera, E., Bersani, M., Cittadini, M., Guglielmi, M., Pagani, D., Noriega, R., Mehra, S., Salleo, A., and Martucci, A., J. Am. Chem. Soc. 135, 34393448 (2013).CrossRefGoogle Scholar
Tandon, B., Yadav, A., Khurana, D., Reddy, P., Santra, P. K., and Nag, A., Chem. Mater. 29, 93609368 (2017).CrossRefGoogle Scholar
Lhuillier, E. and Guyot-Sionnest, P., IEEE J. Sel. Top. Quantum Electron. 23, 6000208 (2017).CrossRefGoogle Scholar
Hyuk Im, S., Kim, H., Woo Kim, S., Kim, S.-W., and Il Seok, S., Nanoscale 4, 15811584 (2012).Google Scholar
Chen, M., Shao, L., Kershaw, S. V., Yu, H., Wang, J., Rogach, A. L., and Zhao, N., ACS Nano 8, 82088216 (2014).CrossRefGoogle Scholar
Seong, H., Cho, K., and Kim, S., Semicond. Sci. Technol. 23, 075011 (2008).CrossRefGoogle Scholar
Chen, M., Yu, H., Kershaw, S. V., Xu, H., Gupta, S., Hetsch, F., Rogach, A. L., and Zhao, N., Adv. Funct. Mater. 24, 5359 (2013).CrossRefGoogle Scholar
Lhuillier, E., Keuleyan, S., Rekemeyer, P., and Guyot-Sionnest, P., J. Appl. Phys. 110, 033110 (2011).CrossRefGoogle Scholar
Guyot-Sionnest, P. and Roberts, J. A., Appl. Phys. Lett. 107, 253104 (2015).CrossRefGoogle Scholar
Keuleyan, S. E., Guyot-Sionnest, P., Delerue, C., and Allan, G., ACS Nano 8, 86768682 (2014).CrossRefGoogle Scholar
Shen, G., Chen, M., and Guyot-Sionnest, P., J. Phys. Chem. Lett. 8, 22242228 (2017).CrossRefGoogle Scholar
Lhuillier, E., Keuleyan, S., Liu, H., and Guyot-Sionnest, P., Chem. Mater. 25, 12721282 (2013).CrossRefGoogle Scholar
Yifat, Y., Ackerman, M., and Guyot-Sionnest, P., Appl. Phys. Lett. 110, 041106 (2017).CrossRefGoogle Scholar
Martinez, B., Livache, C., Goubet, N., Jagtap, A., Cruguel, H., Ouerghi, A., Lacaze, E., Silly, M. G., and Lhuillier, E., J. Phys. Chem. C 122, 859865 (2018).CrossRefGoogle Scholar
Lhuillier, E., Keuleyan, S., Zolotavin, P., and Guyot-Sionnest, P., Adv. Mater. 25, 137141 (2013).CrossRefGoogle Scholar
Izquierdo, E., Robin, A., Keuleyan, S., Lequeux, N., Lhuillier, E., and Ithurria, S., J. Am. Chem. Soc. 138, 1049610501 (2016).CrossRefGoogle Scholar
Livache, C., Izquierdo, E., Martinez, B., Dufour, M., Pierucci, D., Keuleyan, S., Cruguel, H., Becerra, L., Fave, J. L., Aubin, H., Ouerghi, A., Lacaze, E., Silly, M. G., Dubertret, B., Ithurria, S., and Lhuillier, E., Nano Lett. 17, 40674074 (2017).CrossRefGoogle Scholar
Goubet, N., Jagtap, A., Livache, C., Martinez, B., Portalès, H., Xu, X. Z., Lobo, R. P. S. M., Dubertret, B., and Lhuillier, E., J. Am. Chem. Soc. 140, 50335036 (2018).CrossRefGoogle Scholar
Allan, G. and Delerue, C., Phys. Rev. B 86, 165437 (2012).CrossRefGoogle Scholar
Nimtz, G., Schlicht, B., and Dornhaus, R., Narrow-Gap Semiconductors (Springer, 1983).Google Scholar
Man, P. and Pan, D. S., Phys. Rev. B 44, 87458758 (1991).CrossRefGoogle Scholar
Rinnerbauer, V., Hingerl, K., Kovalenko, M., and Heiss, W., Appl. Phys. Lett. 89, 193114 (2006).CrossRefGoogle Scholar
Lhuillier, E., Keuleyan, S., and Guyot-Sionnest, P., Nanotechnology 23, 175705 (2012).CrossRefGoogle Scholar
Hendricks, M. P., Campos, M. P., Cleveland, G. T., Plante, I. J.-L., and Owen, J. S., Science 348, 12261230 (2015).CrossRefGoogle Scholar
Pedetti, S., Nadal, B., Lhuillier, E., Mahler, B., Bouet, C., Abécassis, B., Xu, X., and Dubertret, B., Chem. Mater. 25, 24552462 (2013).CrossRefGoogle Scholar
De Trizio, L. and Manna, L., Chem. Rev. 116, 1085210887 (2016).CrossRefGoogle Scholar
Beberwyck, B. J., Surendranath, Y., and Alivisatos, A. P., J. Phys. Chem. C 117, 1975919770 (2013).CrossRefGoogle Scholar
Rogach, A. L., Kershaw, S. V., Burt, M., Harrison, M. T., Kornowski, A., Eychmüller, A., and Weller, H., Adv. Mater. 11, 552555 (1999).3.0.CO;2-Q>CrossRefGoogle Scholar
Geiregat, P., Houtepen, A. J., Sagar, L. K., Infante, I., Zapata, F., Grigel, V., Allan, G., Delerue, C., Van Thourhout, D., and Hens, Z., Nat. Mater. 17, 3542 (2018).CrossRefGoogle Scholar
Rogach, A. L., Eychmüller, A., Hickey, S. G., and Kershaw, S. V., Small 3, 536557 (2007).CrossRefGoogle Scholar
Lhuillier, E., Ithurria, S., Descamps-Mandine, A., Douillard, T., Castaing, R., Xu, X. Z., Taberna, P.-L., Simon, P., Aubin, H., and Dubertret, B., J. Phys. Chem. C 119, 2179521799 (2015).CrossRefGoogle Scholar
Lhuillier, E., Robin, A., Ithurria, S., Aubin, H., and Dubertret, B., Nano Lett. 14, 27152719 (2014).CrossRefGoogle Scholar
Martinez, B., Livache, C., Notemgnou Mouafo, L. D., Goubet, N., Keuleyan, S., Cruguel, H., Ithurria, S., Aubin, H., Ouerghi, A., Doudin, B., Lacaze, E., Dubertret, B., Silly, M. G., Lobo, R. P. S. M., Dayen, J.-F., and Lhuillier, E., ACS Appl. Mater. Interfaces 9, 3617336180 (2017).CrossRefGoogle Scholar
Keuleyan, S., Lhuillier, E., and Guyot-Sionnest, P., J. Am. Chem. Soc. 133, 1642216424 (2011).CrossRefGoogle Scholar