Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T15:34:02.090Z Has data issue: false hasContentIssue false

Hybrid Zero-Dimensional C60 clusters with Graphene – Synthesis, Fabrication and Transport Characteristics

Published online by Cambridge University Press:  15 June 2017

Srishti Chugh
Affiliation:
Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968-0517, U.S.A.
Luis Echegoyen
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968-0517, U.S.A.
Anupama B. Kaul*
Affiliation:
Department of Electrical & Computer Engineering, University of Texas at El Paso, El Paso, TX 79968-0517, U.S.A.
*
*(Email: akaul@utep.edu)
Get access

Abstract

In this work, a new method is presented to synthesize graphene-C60 hybrid materials using an electrophoretic deposition technique to study the graphene-C60 interactions. Electronic measurements of the structure were conducted before and after the attachment of C60 clusters at different applied voltages on graphene devices. The assembled clusters of C60 on mechanically exfoliated graphene were investigated using Raman Spectroscopy and Scanning Electron Microscopy (SEM), which reveal a uniform morphology of C60 on graphene. The results indicate that graphene-C60 hybrids are excellent electron accepting/charge transporting materials which can provide an effective route to facilitate the application of these hybrids in electronic or opto-electronic device platforms.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A. K. and Novoselov, K. S., Nat. Mater. 6, 183 (2007).Google Scholar
Stoller, M. D., Park, S., Zhu, Y., An, J. and Ruoff, R. S., Nano Lett. 8, 34983502 (2008).CrossRefGoogle Scholar
Novoselov, K. S., Falko, V. I., Colombo, L., Gellert, P. R., Schwab, M.G. and Kim, K., Nature 490 (7419), 192200 (2012).Google Scholar
Eda, G., Fanchini, G., and Chhowalla, M., Nat. Nanotechnol. 3, 270274 (2008).Google Scholar
Wan, X., Long, G., Huang, L. and Chen, Y., Adv. Mater. 23, 5342 (2011).Google Scholar
Zhu, Y. W., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W. W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, D. E. A. and Ruoff, R. S., Science 332, 1537 (2011).CrossRefGoogle Scholar
Park, S. and Ruoff, R. S., Nat. Nanotechnol. 4, 217 (2009).Google Scholar
Imahori, H., and Sakata, Y., Eur. J. Org. Chem., 2445-2457 (1999).Google Scholar
Guldi, D. M., Chem. Commun. 5, 321327 (2000).CrossRefGoogle Scholar
Kim, K., Lee, T. H., Santos, E. J. G., Jo, P. S., Salleo, A., Nishi, Y. and Bao, Z., ACS Nano 9, 59225928 (2015).CrossRefGoogle Scholar
Ran, K., Mi, X., Shi, Z. J., Chen, Q., Shi, Y. F. and Zuo, J. M., Carbon 50, 54505457 (2012).CrossRefGoogle Scholar
Gomez, A. C., Buscema, M., Molenaar, R., Singh, V., Janssen, L., Zant, H. S. J., and Steele, G. A., 2D Materials 1.1, 011002 (2014).Google Scholar
Kamat, P. V., Barazzouk, S. and Thomas, K. G., J. Phys. Chem. B 104, 40144017 (2000).CrossRefGoogle Scholar
Vidano, R. P., Fischbach, D. B., Willis, L. J. and Loehr, T.M., Solid State Commun. 39.2, 341-344 (1981).Google Scholar
Saito, S. and Oshiyama, A., Physical Review B 49 (24), 1741317419 (1994).Google Scholar
Kuzmany, H., Matus, M., Burger, B. and Winter, J., Adv. Mater. 6, 731 (1994).CrossRefGoogle Scholar
Delgado, L., de la Cruz, P., Langa, F., Urbina, A., Casado, J., and Lopez Navarrete, J. T., Chem. Commun. 104, 17341735 (2004).Google Scholar
Popov, A. A., Yang, S. F. and Dunsch, L., Chem. Rev. 113, 5989 (2013).Google Scholar
Saito, S. and Oshiyama, A., Phys. Rev. Lett. 66 (20), 26372640 (1991).Google Scholar
Jnawali, G., Rao, Y., Beck, J. H., Petrone, N., Kymissis, I., Hone, J., and Heinz, T. F., ACS Nano 9, 7175 (2015).Google Scholar