Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T19:20:45.458Z Has data issue: false hasContentIssue false

Hydrogenation Dynamics of Biphenylene Carbon (Graphenylene) Membranes

Published online by Cambridge University Press:  28 February 2017

Vinicius Splugues
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Pedro Alves da Silva Autreto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Universidade Federal do ABC, Santo André-SP, 09210-580, Brazil
Douglas S. Galvao*
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Get access

Abstract

The advent of graphene created a revolution in materials science. Because of this there is a renewed interest in other carbon-based structures. Graphene is the ultimate (just one atom thick) membrane. It has been proposed that graphene can work as impermeable membrane to standard gases, such argon and helium. Graphene-like porous membranes, but presenting larger porosity and potential selectivity would have many technological applications. Biphenylene carbon (BPC), sometimes called graphenylene, is one of these structures. BPC is a porous two-dimensional (planar) allotrope carbon, with its pores resembling typical sieve cavities and/or some kind of zeolites. In this work, we have investigated the hydrogenation dynamics of BPC membranes under different conditions (hydrogenation plasma density, temperature, etc.). We have carried out an extensive study through fully atomistic molecular dynamics (MD) simulations using the reactive force field ReaxFF, as implemented in the well-known Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Our results show that the BPC hydrogenation processes exhibit very complex patterns and the formation of correlated domains (hydrogenated islands) observed in the case of graphene hydrogenation was also observed here. MD results also show that under hydrogenation BPC structure undergoes a change in its topology, the pores undergoing structural transformations and extensive hydrogenation can produce significant structural damages, with the formation of large defective areas and large structural holes, leading to structural collapse.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., Craighead, H. G., and McEuen, P. L., Nano Lett. 8, 2458 (2008).Google Scholar
Brunetto, G., Autreto, P. A. S., Machado, L. D., Santos, B. I., Dos Santos, R. P. B. e Galvao, D. S., J. Phys. Chem. C 116, 12810 (2012).Google Scholar
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B. e Galvao, D. S., Nanotechnology 20, 465704 (2009).Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).Google Scholar
Withers, F., Dubois, M., and Savchenko, A. K., Phys. Rev. B 82, 73403 (2010).Google Scholar
Franck, I. W., Tanenbaum, D. M., van der Zende, A. M., and McEuen, P. L., J. Vaccum Sci. & Technol. B 25, 2558 (2007).Google Scholar
Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., and Mombru, A. W., J. Phys. Cond. Mat. 21, 285304 (2009).Google Scholar
Baughman, R. H., Eckhardt, H. e Kertesz, M., J. Chem. Phys. 87, 6687 (1987).Google Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S. e Baughman, R. H., Phys. Rev. B 68, 035430 (2004).Google Scholar
Brunetto, G. and Galvao, D. S., MRS Proc. 1658, mrsf13-1658-rr07-20 (2014).Google Scholar
Perim, E., Paupitz, R., Autreto, P. A. S., and Galvao, D. S., J. Phys. Chem. C118, 23670 (2014).Google Scholar
Paupitz, R., Legoas, S. B., Srinivasan, S. G., van Duin, A. C. T., and Galvao, D. S., Nanotechnology 24, 035706 (2013).Google Scholar
Casewit, C. J., Colwell, K. S. e Rappé, A.K., J. Am. Chem. Soc. 114, 10035 (1992).Google Scholar
Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Philips, J., Shinozaki, A., Varadarajan, K. e Shulten, Klaus, J. Comp. Phys. 151, 283 (1999).Google Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F. e Goddard, W. A. III, J. Phys. Chem. A. 105, 9396 (2001).Google Scholar
Srinivasan, S. G., van Duin, A. C. T. and Ganesh, P., J. Phys. Chem. A. 119, 571 (2015).Google Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995).Google Scholar
Martínez, L., J. Comp. Chem. 30, 2157 (2009).Google Scholar
Psofogiannakis, G. M. and Froudakis, G. E., J. of Phys. Chem. C, 116(36):19211 (2012).Google Scholar