Published online by Cambridge University Press: 06 February 2017
Due to their highly favorable materials properties such as direct bandgap, appropriate bandgap energy against solar spectrum, and ability to form multiple junctions, epitaxially grown III-V compound semiconductors such as gallium arsenide have provided unmatched performance over silicon in solar energy harvesting. However, their large-scale deployment in terrestrial photovoltaics remains as a daunting challenge mainly due to the high cost of growing device-quality epitaxial materials. In this regard, releasable multilayer epitaxial growth in conjunction with printing-based deterministic materials assemblies represents a promising approach that can overcome this challenge but also create novel engineering designs and device functionalities, each with significant practical values in photovoltaic technologies. This article will provide an overview of recent advances in materials design, fabrication concept, and nanophotonic light management of multilayer-grown nanomembrane-based GaAs solar cells aiming for high performance, cost-efficient platforms of III-V photovoltaics.