Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T11:59:43.688Z Has data issue: false hasContentIssue false

Impact of Molecular Dynamics Simulations on Research and Development of Semiconductor Materials

Published online by Cambridge University Press:  23 September 2019

Xiaowang Zhou*
Affiliation:
Mechanics of Materials Department, Sandia National Laboratories, Livermore, CA94550, U.S.A.
*
Get access

Abstract

Atomic scale defects critically limit performance of semiconductor materials. To improve materials, defect effects and defect formation mechanisms must be understood. In this paper, we demonstrate multiple examples where molecular dynamics simulations have effectively addressed these issues that were not well addressed in prior experiments. In the first case, we report our recent progress on modelling graphene growth, where we found that defects in graphene are created around periphery of islands throughout graphene growth, not just in regions where graphene islands impinge as believed previously. In the second case, we report our recent progress on modelling TlBr, where we discovered that under an electric field, edge dislocations in TlBr migrate in both slip and climb directions. The climb motion ejects extensive vacancies that can cause the rapid aging of the material seen in experiments. In the third case, we discovered that the growth of InGaN films on (0001) surfaces suffers from a serious polymorphism problem that creates enormous amounts of defects. Growth on ($11\bar{2}0$) surfaces, on the other hand, results in single crystalline wurtzite films without any of these defects. In the fourth case, we first used simulations to derive dislocation energies that do not possess any noticeable statistical errors, and then used these error-free methods to discover possible misuse of misfit dislocation theory in past thin film studies. Finally, we highlight the significance of molecular dynamics simulations in reducing defects in the design space of nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Queisser, H. J. and Haller, E. E., Science 281, 945 (1998).CrossRefGoogle Scholar
Zweibel, K., Science 328, 699 (2010).CrossRefGoogle Scholar
Deng, Z., Jiang, Y., Ma, Z., Wang, W., Jia, H., Zhou, J., and Chen, H., Sci. Rep. 3, 3389 (2013).CrossRefGoogle Scholar
Wu, J., J. Appl. Phys. 106, 011101 (2009).CrossRefGoogle Scholar
Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science 297, 787 (2002).CrossRefGoogle Scholar
Geim, A. K., Science 324, 1530 (2009).CrossRefGoogle Scholar
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., and Lau, C. N., Appl. Phys. Lett. 92, 151911 (2008).CrossRefGoogle Scholar
Huang, P. Y., Ruiz-Vargas, C. S., van der Zande, A. M., Whitney, W. S., Levendorf, M. P., Kevek, J. W., Garg, S., Alden, J. S., Hustedt, C. J., Zhu, Y., Park, J., McEuen, P. L., and Muller, D. A., Nature 469, 389 (2011).CrossRefGoogle Scholar
Kim, K., Lee, Z., Regan, W., Kisielowski, C., Crommie, M. F., and Zettl, A., ACS Nano 5, 2142 (2011).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., and Foster, M. E., J. Comp. Chem. 36, 1719 (2015).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., Foster, M. E., and Zimmerman, J. A., J. Mater. Sci. 50, 2859 (2015).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., and Foster, M. E., New J. Chem. 42, 5215 (2018)CrossRefGoogle Scholar
Schlesinger, T. E., Toney, J. E., Yoon, H., Lee, E. Y., Brunett, B. A., Franks, L., and James, R. B., Mater. Sci. Eng. R 32, 103 (2001).CrossRefGoogle Scholar
Churilov, A., Ciampi, G., Kim, H., Cirignano, L., Higgins, W., Olschner, F., and Shah, K., IEEE Trans. Nuc. Sci. 56, 1875 (2009).CrossRefGoogle Scholar
Hitomi, K., Kikuchi, Y., Shoji, T., and Ishii, K., IEEE Trans. Nuc. Sci. 56, 1859 (2009).CrossRefGoogle Scholar
Hitomi, K., Shoji, T., and Nlizeki, Y., Nuc. Instru. Meth. Phys. Res. A 585, 102 (2008).CrossRefGoogle Scholar
Kozlov, V., Kemell, M., Vehkamaki, M., and Leskela, M., Nuc. Instru. Meth. Phys. Res. A 576, 10 (2007).CrossRefGoogle Scholar
Dönmez, B., He, Z., Kim, H., Cirignano, L., and Shah, K., Nuc. Instru. Meth. Phys. Res. A 623, 1024 (2010).CrossRefGoogle Scholar
Costa, F., Mesquita, C., and Hamada, M., IEEE Trans. Nuc. Sci. 56, 1817 (2009).CrossRefGoogle Scholar
Kozorezov, A., Gostilo, V., Owens, A., Quarati, F., Shorohov, M., Webb, M. A., and Wigmore, J. K., J. App. Phys. 108, 064507 (2010).CrossRefGoogle Scholar
Lordi, V., J. Cryst. Growth 379, 84 (2013).CrossRefGoogle Scholar
Leaõ, C. R. and Lordi, V., Phys. Rev. Lett. 108, 246604 (2012).CrossRefGoogle Scholar
Leaõ, C. R. and Lordi, V., Phys. Rev. B 87, 081202(R) (2013).CrossRefGoogle Scholar
Zhou, X. W., Foster, M. E., Jones, Reese, Yang, P., Fan, H., and Doty, F. P., J. Mater. Sci. Res., 4, 15 (2015).Google Scholar
Stukowski, A., Modelling Simul. Mater. Sci. Eng., 18, 015012 (2010). http://www.ovito.org/.CrossRefGoogle Scholar
Feng, W., Kuryatkov, V. V., Chandolu, A., Song, D. Y., Pandikunta, M., Nikishin, S. A., and Holtz, M., J. Appl. Phys., 104, 103530 (2008).CrossRefGoogle Scholar
Li, Q. and Wang, G. T., Appl. Phys. Lett., 97, 181107 (2010).CrossRefGoogle Scholar
Wierer, J. J. Jr., Li, Q., Koleske, D. D., Lee, S. R., and Wang, G. T., Nanotech. 23, 194007 (2012).CrossRefGoogle Scholar
Li, Y., You, S., Zhu, M., Zhao, L., Hou, W., Detchprohm, T., Taniguchi, Y., Tamura, N., Tanaka, S., and Wetzel, C., Appl. Phys. Lett., 98 151102 (2011).Google Scholar
Ee, Y. K., Biser, J. M., Cao, W., Chan, H. M., Vinci, R. P., and Tansu, N., IEEE J. Sel. Top. Quantum Electron. 15, 1066 (2009).Google Scholar
Gruber, J., Zhou, X. W., Zhou, R. E., Lee, S. R., and Tucker, G. J., J. Appl. Phys. 121, 195301 (2017).CrossRefGoogle Scholar
Chu, K., Gruber, J., Zhou, X. W., Jones, R. E., Lee, S. R., and Tucker, G. J., Phys. Rev. Mater. 2, 013402 (2018).CrossRefGoogle Scholar
Zhou, X. W. and Jones, R. E., J. Mater. Res. 6, 88 (2017).Google Scholar
Zhou, X. W. and Wadley, H. N. G., J. Appl. Phys. 84, 2301 (1998).CrossRefGoogle Scholar
Zhou, X. W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezo, A., Petford-Long, A. K., Smith, G. D. W., Clifton, P. H., Martens, R. L., and Kelly, T. F., Acta Mater. 49, 4005 (2001).CrossRefGoogle Scholar
Chavez, J. J., Zhou, X. W., Almeida, S. F., Aguirre, R., and Zubia, D., J. Mater. Sci. Res. 5, 1 (2016).CrossRefGoogle Scholar
Hoover, W. G., Phys. Rev. B 31, 1695 (1985).CrossRefGoogle Scholar
Lee, H J., Ryu, H., Lee, C., Kim, K, J. Cryst. Growth 191, 621 (1998)CrossRefGoogle Scholar
Selke, H., Kirchner, V., Heinke, H., Einfeldt, S., Ryder, P., and, Hommel, D., J. Cryst. Growth 208, 57 (2000)CrossRefGoogle Scholar
Ostwald, W., Zeit. Phys. Chemie 22, 289 (1897).Google Scholar
Farrell, R. M., Young, E. C., Wu, F., DenBaars, S. P., and Speck, J. S., Semicond. Sci. Technol. 27, 024001 (2012).CrossRefGoogle Scholar
Nix, W. D., Metall. Trans. A 20, 2217 (1989).CrossRefGoogle Scholar
Maroudas, D., Zepeda-Ruiz, L. A., and Weinberg, W. H., Surf. Sci. 411, L865 (1998).CrossRefGoogle Scholar
Payne, A. P., Nix, W. D., Lairson, B. M., and Clemens, B. M., Phys. Rev. B 47, 13730 (1993).CrossRefGoogle Scholar
Pizzagalli, L., Cicero, G., and Catellani, A., Phys. Rev. B 68, 195302 (2003).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., Zimmerman, J. A., Cruz-Campa, J. L., Zubia, D., Martin, J. E., and van Swol, F., J. Mech. Phys. Solids 91, 265 (2016).CrossRefGoogle Scholar
Heggie, M., Jones, R., and Umerski, A., Philos. Mag. A 63, 571 (1991).CrossRefGoogle Scholar
Jones, R., Umerski, A., Sitch, P., Heggie, M. I., and Öberg, S., Phys. Status Solidi A 137, 389 (1993).CrossRefGoogle Scholar
Lehto, N. and Öberg, S., Phys. Rev. Lett. 80, 5568 (1998).CrossRefGoogle Scholar
Nandedkar, A. S. and Narayan, J., Philos. Mag. A 61, 873 (1990).CrossRefGoogle Scholar
Trinczek, U. and Teichler, H., Phys. Status Solidi A 137, 577 (1993).CrossRefGoogle Scholar
Bulatov, V. V., and Cai, W., Computer Simulations of Dislocations (Oxford University Press, London, 2006).Google Scholar
Cai, W., Bulatov, V. V., Chang, J., Li, J., and Yip, S., Phil. Mag. 83, 539 (2003).CrossRefGoogle Scholar
Cai, W., Bulatov, V. V., Chang, J., Li, J., and Yip, S., Phys. Rev. Lett. 86, 5727 (2001).CrossRefGoogle Scholar
Li, J., Wang, C. Z., Chang, J. P., Cai, W., Bulatov, V. V., Ho, K. M., and Yip, S., Phys. Rev. B 70, 104113 (2004).CrossRefGoogle Scholar
Bigger, J. R. K., McInnes, D. A., Sutton, A. P., Payne, M. C., Stich, I., King-Smith, R. D., Bird, D. M., and Clarke, L. J., Phys. Rev. Lett. 69, 2224 (1992).CrossRefGoogle Scholar
Ismail-Beigi, S., and Arias, T. A., Phys. Rev. Lett. 84, 1499 (2000).CrossRefGoogle Scholar
Wang, G., Strachan, A., Cagin, T., and Goddard, W. A. III, Phys. Rev. B 67, 140101(R) (2003).CrossRefGoogle Scholar
Bennetto, J., Nunes, R.W., and Vanderbilt, D., Phys. Rev. Lett. 79, 245 (1997).CrossRefGoogle Scholar
Blase, X., Lin, K., Canning, A., Louie, S. G., and Chrzan, D. C., Phys. Rev. Lett. 84, 5780 (2000).CrossRefGoogle Scholar
Zhou, X. W., and Foiles, S. M., in Uncertainty Quantification and Model Calibration , edited by Hessling, J. P. (InTech, 2017), p. 89.Google Scholar
Zhou, X. W., Sills, R. B., Ward, D. K., and Karnesky, R. A., Phys. Rev. B 95, 054112 (2017).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., Martin, J. E., van Swol, F. B., Cruz-Campa, J. L., and Zubia, D., Phys. Rev. B 88, 085309 (2013).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., Doty, F. P., Zimmerman, J. A., Wong, B. M., Cruz-Campa, J. L., Nielson, G. N., Chavez, J. J., Zubia, D., and McClure, J. C., Prog. Photovolt.: Res. Appl. 23, 1837 (2015).CrossRefGoogle Scholar