Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T05:33:05.407Z Has data issue: false hasContentIssue false

In Situ High-Energy X-Ray Diffraction Studies of Melting, Solidification and Solid-State Transformation of Ni3Sn

Published online by Cambridge University Press:  21 January 2020

Rijie Zhao
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
Jianrong Gao*
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
Yang Ren
Affiliation:
X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

Melting, solidification and solid-state transformation of the intermetallic Ni3Sn compound were investigated in situ using synchrotron high-energy X-ray diffraction. It was observed that the compound undergoes a hexagonal to cubic transition before melting. In solidification, a disordered cubic phase crystallizes from the liquid at a large undercooling but it is reordered prior to bulk solidification. In melting and solidification, forced or natural flows are active bringing about significant changes of crystal orientations. These in situ observations provided insights into phase transformations of Ni3Sn at elevated temperatures and their roles in formation of metastable microstructure consisting of coarse grains and subgrains.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kenel, C., Grolimund, D., Fife, J.L., Samson, V.A., van Petegem, S., Van Swygenhoven, H. and Linengbach, C., Scr. Mater. 114, 117 (2016) .10.1016/j.scriptamat.2015.12.009CrossRefGoogle Scholar
Zhao, C., Fezzaa, K., Cunningham, R.W., Wen, H., De Carlo, F., Chen, L., Rollett, A. and Sun, T., Sci. Rep. 7, 3602 (2017) .10.1038/s41598-017-03761-2CrossRefGoogle Scholar
Herlach, D., Galenko, P. and Holland-Moritz, D., Metastable Solids from Undercooled Melts, (Elsevier, Amsterdam, 2007), p.1.Google Scholar
Schwarz, M., Karma, A., Eckler, E. and Herlach, D.M., Phys. Rev. Lett. 73, 1380 (1994).10.1103/PhysRevLett.73.1380CrossRefGoogle Scholar
Clopet, C.R., Cochrane, R.F. and Mullis, A.M., Acta Mater. 61, 6894 (2013) .CrossRefGoogle Scholar
Wei, X.X., Lin, X., Xu, W., Huang, Q.S., Ferry, M., Li, J.F. and Zhou, Y.H., Acta Mater. 95, 44 (2015) .CrossRefGoogle Scholar
Gao, J., Volkmann, T. and Herlach, D.M., Acta Mater. 50, 3003 (2002) .CrossRefGoogle Scholar
Xu, W., Brandt, M., Sun, S., Elambasseril, J., Liu, Q., Latham, K., Xia, K. and Qian, M., Acta Mater. 85, 74 (2015) .CrossRefGoogle Scholar
Zhang, T., Liu, F., Wang, H.F. and Yang, G.C., Scr. Mater. 63, 43 (2010) .CrossRefGoogle Scholar
Volkmann, T., Strohmenger, J., Gao, J. and Herlach, D.M., Appl. Phys. Lett. 85, 2232 (2004) .CrossRefGoogle Scholar
Li, M., Nagashio, K., Ishikawa, T., Mizuno, A., Adachi, M., Watanabe, M., Yoda, S., Kuribayashi, K. and Katayama, Y., Acta Mater. 56, 2514 (2008) .CrossRefGoogle Scholar
Hartmann, H., Galenko, P.K., Holland-Moritz, D., Kolbe, M., Herlach, D.M. and Shuleshova, O., J. Appl. Phys. 103, 073509 (2008) .CrossRefGoogle Scholar
Hartmann, H., Holland-Moritz, D., Galenko, P.K. and Herlach, D.M., EPL 87, 40007 (2009) .CrossRefGoogle Scholar
Wang, Y.Q., Gao, J., Kolbe, M., Chuang, A., Ren, Y. and Matson, D., Acta Mater. 142, 172 (2018) .CrossRefGoogle Scholar
Tolni, D., Mendis, C.L., Stark, A., Szakács, G., Wiese, B., Kainer, K.U. and Hort, N., Mater. Lett. 102–103, 62 (2013) .CrossRefGoogle Scholar
Yang, C. and Gao, J., J. Cryst. Growth 394, 24 (2014) .10.1016/j.jcrysgro.2014.02.015CrossRefGoogle Scholar
Schmetterer, C., Flandorfer, H., Richter, K.W., Saeed, U., Kaufmann, M., Roussel, P. and Ipser, H., Intermetallics 15, 869 (2007) .CrossRefGoogle Scholar
Ren, Y., JOM 64 , 140 (2012) .CrossRefGoogle Scholar
Gao, J., Kao, A., Bojarevics, V., Pericleous, K., Galenko, P.K. and Alexandrov, D.V., J. Cryst. Growth 471, 66 (2017) .CrossRefGoogle Scholar
Yasuda, H., Yamamoto, Y., Nakatsuka, N., Yoshiya, M., Nagira, T, Sugiyama, A., Ohnaka, I.. Uesugi, K. and Umetani, K., Int. J. Cast Metals Res. 22, 15 (2009).10.1179/136404609X368118CrossRefGoogle Scholar
Turnbull, D., J. Chem. Phys. 20, 411 (1952).10.1063/1.1700435CrossRefGoogle Scholar
Spaepen, F. and Meyer, R.B., Scr. Metall 10, 257 (1976).CrossRefGoogle Scholar
Holland-Moritz, D., J. Non-Cryst. Solids 250‒252, 839 (1999).CrossRefGoogle Scholar
Corey, C.L. and Potter, D.I., J. Appl. Phys. 38, 3894 (1967) .CrossRefGoogle Scholar
Zheng, X.Q., Yang, Y., Gao, Y.F., Hoyt, J.J., Asta, M. and Sun, D.Y., Phys. Lett. E 85, 041601 (2012) .Google Scholar
Maher, H., Mater. Trans. JIM 37, 1259 (1996).Google Scholar