Published online by Cambridge University Press: 15 June 2017
Determining what external stimuli influence cell differentiation, morphology, and growth continues to be a focus on many research groups to meet the healthcare Grand Challenges. While prior work has shown the influence of stiffness, surface chemistry and topography, these parameters often change in tandem, making it difficult to delineate the role of an individual component. This study examined the possible incorporation of microelectronic processing to produce reusable substrates for cell guidance studies. Subsequent plating of substrates cleaned with methods common in a microelectronic fabrication process showed complex responses including migration. Optical characterization of surfaces after cleaning showed remaining cellular debris that could be removed through the incorporation of a piranha solution. The micro patterned substrates did allow controlled comparison between dental pulp stem cells and osteoblast cells. The dental pulp cells did not show any cell alignment or cell proliferation (as indicated by cell density) with the isotropic or anisotropic micropatterns on the initial plating. The osteoblast cells (control) only aligned with the lines and not any of the other patterns (dots, holes or hexagons).