Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T06:46:09.041Z Has data issue: false hasContentIssue false

The Influence of Cellular Debris on Cell Guidance and Implications for Incorporating Silicon Based Micropatterns

Published online by Cambridge University Press:  15 June 2017

Delphine Dean
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC29634
Katherine Hafner
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC29634
Xue Chen
Affiliation:
Department of Materials Science & Engineering, Clemson University, Sirrine Hall Rm. 161, Clemson, SC29634
Brian Kirkland
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC29634
Theresa Hafner
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC29634
Marian S. Kennedy*
Affiliation:
Department of Materials Science & Engineering, Clemson University, Sirrine Hall Rm. 161, Clemson, SC29634
*
Get access

Abstract

Determining what external stimuli influence cell differentiation, morphology, and growth continues to be a focus on many research groups to meet the healthcare Grand Challenges. While prior work has shown the influence of stiffness, surface chemistry and topography, these parameters often change in tandem, making it difficult to delineate the role of an individual component. This study examined the possible incorporation of microelectronic processing to produce reusable substrates for cell guidance studies. Subsequent plating of substrates cleaned with methods common in a microelectronic fabrication process showed complex responses including migration. Optical characterization of surfaces after cleaning showed remaining cellular debris that could be removed through the incorporation of a piranha solution. The micro patterned substrates did allow controlled comparison between dental pulp stem cells and osteoblast cells. The dental pulp cells did not show any cell alignment or cell proliferation (as indicated by cell density) with the isotropic or anisotropic micropatterns on the initial plating. The osteoblast cells (control) only aligned with the lines and not any of the other patterns (dots, holes or hexagons).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheung, L. K. and Leung, A. C. F., J. Oral Maxillofac. Surg. 61, 1263 (2003).Google Scholar
Lee, K. H., Maiden, M. F. J., Tanner, A. C. R., and Weber, H. P., J. Periodontol. 70, 131 (1999).Google Scholar
Machtei, E. E., Oved-Peleg, E., and Peled, M., Clin. Oral Implants Res. 17, 658 (2006).Google Scholar
Esposito, M., Ardebili, Y., and V Worthington, H., Cochrane Database Syst. Rev. (2014).Google Scholar
Mundy, G. R., Rodan, S. B., Majeska, R. J., DeMartino, S., Trimmier, C., Martin, T. J., and Rodan, G. A., Calcif. Tissue Int. 34, 542 (1982).Google Scholar
Brunette, D. M., Kenner, G. S., and Gould, T. R. L., J. Dent. Res. 62, 1045 (1983).Google Scholar
Wong, G. L., Lukert, B. P., and Adams, J. S., Nature 285, 254 (1980).Google Scholar
Nijweide, P. J., van Iperen-van Gent, A. S., Kawilarang-de Haas, E. W., van der Plas, A., and Wassenaar, A. M., J. Cell Biol. 93, 318 (1982).Google Scholar
Chen, T. L., Cone, C. M., Morey-Holton, E., and Feldman, D., J. Biol. Chem. 258, 4350 (1983).CrossRefGoogle Scholar
Rifas, L., Shen, V., Mitchell, K., and Peck, W. A., Proc. Natl. Acad. Sci. 81, 4558 (1984).CrossRefGoogle Scholar
Forrest, S. M., Ng, K. W., Findlay, D. M., Michelangeli, V. P., Livesey, S. A., Partridge, N. C., Zajac, J. D., and Martin, T. J., Calcif. Tissue Int. 37, 51 (1985).Google Scholar
Ber, S., Kose, G. T., and Hasirci, V., Biomaterials 26, 1977 (2005).Google Scholar
Gao, Y., Gao, B., Wang, R., Wu, J., Zhang, L. J., Hao, Y. L., and Tao, X. J., Appl. Surf. Sci. 255, 5009 (2009).Google Scholar
Citeau, A., Guicheux, J., Vinatier, C., Layrolle, P., Nguyen, T. P., Pilet, P., and Daculsi, G., Biomaterials 26, 157 (2005).Google Scholar
Sato, M., Slamovich, E. B., and Webster, T. J., Biomaterials 26, 1349 (2005).CrossRefGoogle Scholar
Kazakia, G. J., Nauman, E. A., Ebenstein, D. M., Halloran, B. P., and Keaveny, T. M., J. Biomed. Mater. Res. Part A 77A, 688 (2006).Google Scholar
Rea, S. M., Brooks, R. A., Schneider, A., Best, S. M., and Bonfield, W., J. Biomed. Mater. Res. Part B Appl. Biomater. 70B, 250 (2004).Google Scholar
Xu, J. L., Khor, K. A., Sui, J. J., Zhang, J. H., and Chen, W. N., Biomaterials 30, 5385 (2009).Google Scholar
Shi, Z., Huang, X., Cai, Y., Tang, R., and Yang, D., Acta Biomater. 5, 338 (2009).Google Scholar
Lamers, E., van Horssen, R., te Riet, J., van Delft, F., Luttge, R., Walboomers, X. F., and Jansen, J. A., Eur Cell Mater. 329 (2010).Google Scholar
Liu, H., Gronthos, S., and Shi, S., in Adult Stem Cells, edited by K., I. and T.-M., R. L. B. in Enzymology (Academic Press, 2006), pp. 99113.Google Scholar
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., and Shi, S., Proc. Natl. Acad. Sci. U. S. A. 97, 13625 (2000).Google Scholar
Young, C. S., Terada, S., Vacanti, J. P., Honda, M., Bartlett, J. D., and Yelick, P. C., J. Dent. Res. 81, 695 (2002).Google Scholar
Casagrande, L., Cordeiro, M. M., Nör, S. A., and Nör, J. E., Odontology 99, 1 (2011).Google Scholar
Galler, K. M., Cavender, A. C., Koeklue, U., Suggs, L. J., Schmalz, G., and D’aSouza, R. N. B. T.-R. M., Regen. Med. 6, 191 (2011).Google Scholar
Neuss, S., Apel, C., Buttler, P., Denecke, B., Dhanasingh, A., Ding, X., Grafahrend, D., Groger, A., Hemmrich, K., Herr, A., Jahnen-Dechent, W., Mastitskaya, S., Perez-Bouza, A., Rosewick, S., Salber, J., Wöltje, M., and Zenke, M., Biomaterials 29, 302 (2008).Google Scholar
Liu, L., Ling, J., Wei, X., Wu, L., and Xiao, Y., J. Endod. 35, 1368 (2009).Google Scholar
Galler, K. M., Cavender, A., Yuwono, V., Dong, H., Shi, S., Schmalz, G., Hartgerink, J. D., and D’Souza, R. N., Tissue Eng. Part A 14, 2051 (2008).Google Scholar
Qin, C., Baba, O., and Butler, W. T., Crit. Rev. Oral Biol. Med. 15, 126 (2004).Google Scholar
Volponi, A. A., Pang, Y., and Sharpe, P. T., Trends Cell Biol. 20, 715 (2010).Google Scholar
Song, J.-S., Stefanik, D., Damek-Poprawa, M., Alawi, F., and Akintoye, S. O., Differentiation 77, 29 (2009).Google Scholar
Walther, A., Bernhardt, A., Pompe, W., Gelinsky, M., Mrozik, B., Hoffmann, G., Cherif, C., Bertram, H., Richter, W., and Schmack, G., Text. Res. J. 77, 892 (2007).Google Scholar
Heinemann, C., Heinemann, S., Bernhardt, A., Worch, H., and Hanke, T., Biomacromolecules 9, 2913 (2008).Google Scholar
Ganguly, S., Ashley, L. A., Pendleton, C. M., Grey, R. D., Howard, G. C., Castle, L. D., Peyton, D. K., Fultz, M. E., and DeMoss, D. L., Can. J. Physiol. Pharmacol. 86, 403 (2008).CrossRefGoogle Scholar
Fischer, L. M., Tenje, M., Heiskanen, A. R., Masuda, N., Castillo, J., Bentien, A., Émneus, J., Jakobsen, M. H., and Boisen, A., Microelectron. Eng. 86, 1282 (2009).Google Scholar
Chen, X., Substrate Topography Design and Fabrication for Osteoblast and Dental Pulp Stem Cells Studies, Clemson University, 2011.Google Scholar
Riccio, M., Resca, E., Maraldi, T., Pisciotta, A., Ferrari, A., Bruzzesi, G., and De Pol, A., Eur. J. Histochem. Vol 54, No 4 (2010).Google Scholar
Collart-Dutilleul, P.-Y., Secret, E., Panayotov, I., Deville de Périère, D., Martín-Palma, R. J., Torres-Costa, V., Martin, M., Gergely, C., Durand, J.-O., Cunin, F., and Cuisinier, F. J., ACS Appl. Mater. Interfaces 6, 1719 (2014).Google Scholar
Huang, H.-H., Ho, C.-T., Lee, T.-H., Lee, T.-L., Liao, K.-K., and Chen, F.-L., Biomol. Eng. 21, 93 (2004).Google Scholar
Zhang, W., Walboomers, X. F., van Kuppevelt, T. H., Daamen, W. F., Bian, Z., and Jansen, J. A., Biomaterials 27, 5658 (2006).Google Scholar
Hung, C.-N., Mar, K., Chang, H.-C., Chiang, Y.-L., Hu, H.-Y., Lai, C.-C., Chu, R.-M., and Ma, C. M., Biomaterials 32, 6995 (2011).Google Scholar
Zheng, L., Yang, F., Shen, H., Hu, X., Mochizuki, C., Sato, M., Wang, S., and Zhang, Y., Biomaterials 32, 7053 (2011).Google Scholar
Li, Z., Gong, Y., Sun, S., Du, Y., , D., Liu, X., and Long, M., Biomaterials 34, 7616 (2013).Google Scholar