Published online by Cambridge University Press: 10 May 2016
In this study, we successfully demonstrate a carrier-injection InGaAsP variable optical attenuator (VOA) with a lateral P-I-N junction formed by Ni-InGaAsP alloy and Zn diffusion on a III-V on insulator (III-V-OI) wafer. The Ni-InGaAsP alloy for the n+ junction is formed by direct reaction between Ni and InGaAsP after annealing at 350°C. The p+ junction is formed by the Zn diffusion at 500°C using Zn doped spin-on glass (SOG). By both techniques, we successfully reduce the sheet and contact resistivity in the lateral P-I-N junction even with the relatively low-temperature process as compared with the P-I-N junction formed by conventional Si and Be ion implantation. By injecting carriers into the InGaAsP waveguide through the lateral P-I-N junction, we achieve the optical attenuation of -40 dB/mm with an injection current density of 40 mA/mm at a 1.55 μm wavelength.