Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T21:29:47.479Z Has data issue: false hasContentIssue false

In-situ Formation of a Series ofAgFeO2/γ-Fe2O3 Composites: Impacton Electrochemical Performance

Published online by Cambridge University Press:  08 January 2016

Jessica L. Durham
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A.
Kevin Kirshenbaum
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.A.
Esther S. Takeuchi*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A. Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.A. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A.
Amy C. Marschilok
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A.
Kenneth J. Takeuchi*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A.
*
*corresponding author: kenneth.takeuchi.1@stonybrook.edu
Get access

Abstract

A paradigm for the synthetic manipulation of composition and crystallite size ofbimetallic composites via a low-temperature, aqueous co-precipitation techniqueemploying non-stoichiometric ratios of starting materials, AgNO3 andFe(NO3)3, is introduced. In-situ formation ofcomposites containing crystalline silver ferrite, AgFeO2, andnanocrystalline maghemite, γ-Fe2O3 isdemonstrated and established by Raman spectroscopic and X-ray absorptionanalyses. As a cathode, the lowest silver content composites exhibitedprofoundly improved electrochemical performance, with reversible capacitiesapproximately 100% higher relative to stoichiometric AgFeO2, anddemonstrate the lowest capacity fade.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shannon, R.D., B Rogers, D., and Prewitt, C. T., Inorg. Chem. 10, 719 (1971).Google Scholar
Okamoto, S., Okamoto, S. I., and Ito, T., Acta Crytallogr. Sect. B: Struct. Sci. 28.6, 1774 (1972).CrossRefGoogle Scholar
Sauvage, F., Muñoz-Rojas, D., Poeppelmeier, K. R., and Casañ-Pastor, N., J. Solid State Chem. 182, 374 (2009).CrossRefGoogle Scholar
Farley, K. E., Marschilok, A. C., Takeuchi, E. S., and Takeuchi, K. J., Electrochem. Solid-State Lett. 15, A23 (2012).Google Scholar
Durham, J. L., Kirshenbaum, K., Takeuchi, E. S., Marschilok, A. C., and Takeuchi, K. J., Chem. Commun. 51, 5120 (2015).Google Scholar
Nagarajan, R. and Tomar, N., J. Solid State Chem. 182, 1283 (2009).Google Scholar
Murthy, Y. L. N., Rao, T. K., Viswanath, I. V. K., and Singh, R., J. Magn. Magn. Mater. 322, 2071 (2010).Google Scholar
Sheets, W. C., Mugnier, E., Barnabe, A., Marks, T. J., and Poeppelmeier, K. R., Chem. Mater. 18, 7 (2006).Google Scholar
Winchainchai, A., Dordor, P., Doumerc, J. P., Marquestaut, E., Pouchard, M., and Hagenmuller, P., J. Solid State Chem. 74, 126 (1988).Google Scholar
Clayton, J. E., Cann, D. P., and Ashmore, N., Thin Solid Films 411, 140 (2002).CrossRefGoogle Scholar
Shahriari, D. Y., Erdman, N., Huag, U. T. M., Zarzyczny, M. C., Marks, L. D., and Poeppelmeier, K. R., J. Phys. Chem. Solids 64, 1437 (2003).Google Scholar
Dar, M. I. and Shivashankar, S. A., RSC Adv. 4, 4105 (2014).CrossRefGoogle Scholar
Chaudhari, N. S., Warule, S. S., Muduli, S., Kale, B. B., Jouen, S., Lefez, B., Hannoyer, B., and Ogale, S. B., Dalton Trans. 40, 8003 (2011).Google Scholar
Lützenkirchen-Hecht, D., Wagner, R., Bieder, S., and Frahm, R., J. Phys.: Conf. Ser. 425, 132006 (2013).Google Scholar