Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T11:02:32.011Z Has data issue: false hasContentIssue false

Interfacial Reaction Mechanism between Molten Ag-Cu-Based Active Brazing Alloys and Untreated or Pre-Oxidized PLS-SiC

Published online by Cambridge University Press:  27 September 2019

J. López-Cuevas*
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
J.C. Rendón-Angeles
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
J.L. Rodríguez-Galicia
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
C.A. Gutiérrez-Chavarría
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
*
*Author to whom any correspondence should be addressed (jorge.lopez@cinvestav.edu.mx.)
Get access

Abstract

Based on wettability and reaction interfaces previously reported, as well as on thermodynamic considerations, a likely mechanism has been proposed for the chemical interaction taking place at the metal/ceramic interface during wettability experiments carried out by the so-called “sessile drop” method. The experiments involved three Ag-Cu-based brazing alloys [Cusil (Ag-28wt.%Cu), Cusil-ABA (Ag-34.6wt.%Cu-1.58wt.%Ti) and Incusil-ABA (Ag-26.6wt.%Cu-12.4wt.%In-0.89wt.%Ti)] and as polished and pre-oxidized pressure-less sintered silicon carbide (PLS-SiC), with a total holding time of 90 minutes at 850 °C, under a Zr sponge-gettered vacuum of 10-4/10-5 Torr.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iseki, T., Matsuzaki, H. and Boadi, J.K., Am. Ceram. Soc. Bull. 64, 322 (1985).Google Scholar
Morozumi, S., Endo, M., Kikuchi, M. and Hamajima, K., J. Mater. Sci. 20, 3976 (1985).CrossRefGoogle Scholar
Naka, M., Tanaka, T. and Okamoto, I., Trans. JWRI 15, 49 (1986).Google Scholar
Boadi, J.K., Yano, T. and Iseki, T., J. Mater. Sci. 22, 2431 (1987).CrossRefGoogle Scholar
Yano, T., Suematsu, H. and Iseki, T., J. Mater. Sci. 23, 3362 (1988).CrossRefGoogle Scholar
Suganuma, K., Miyamoto, Y. and Koizumi, M., Annu. Rev. Mater. Sci. 18, 47 (1988).CrossRefGoogle Scholar
Nicholas, M.G., in Metal-Ceramic Joints, edited by Doyama, M., Sõmiya, S., Chang, R.P.H., Iwamoto, N. and Suga, T. (Mater. Res. Soc. Symp. Proc. 8, Pittsburgh, PA, 1989), p. 49.Google Scholar
Nicholas, M.G., in Joining Ceramics, Glass and Metal, edited by Kraft, W. (DGM, Oberursel, 1989), p.3.Google Scholar
Nicholas, M.G. and Crispin, R.M., Ceram. Eng. Sci. Proc. 10, 1602 (1989).CrossRefGoogle Scholar
Naka, M., Tsuyoshi, M. and Okamoto, I., ISIJ Int. 30, 1108 (1990).CrossRefGoogle Scholar
Nicholas, M.G., in Joining of Ceramics, Volume 5, edited by Nicholas, M.G. (Chapman and Hall, London, 1990), p. 73.Google Scholar
Nicholas, M.G., Scand. J. Metall. 20, 157 (1991).Google Scholar
Nishino, T., Urai, S. and Naka, M., Eng. Fract. Mech. 40, 829 (1991).CrossRefGoogle Scholar
Chung, Y-S. and Iseki, T., Eng. Fract. Mech. 40, 941 (1991).CrossRefGoogle Scholar
Fernie, J.A. and Sturgeon, A.J., Met. Mater. (April) 212 (1992).Google Scholar
Nicholas, M.G., in Joining Ceramics, Glass and Metals, edited by Krappitz, H. and Schaeffer, H.A. (Verlag, Deutschen Glastechnischen Gesellschaft, Frankfurt, 1993), p. 57.Google Scholar
Kato, S., Yano, T. and Iseki, T., J. Ceram. Soc. Jpn. 101, 325 (1993).CrossRefGoogle Scholar
López-Cuevas, J., Jones, H. and Atkinson, H.V., J. Mater. Sci. Eng. A 266, 161 (1999).CrossRefGoogle Scholar
López-Cuevas, J., Rendón-Angeles, J.C., Rodríguez-Galicia, J.L., Herrera-Trejo, M. and Méndez-Nonell, J., Mater. Sci. Forum 509, 111 (2006).CrossRefGoogle Scholar
Espe, W., Knoll, M. and Wilder, M.P., Electron. (October), 80 (1950).Google Scholar
Naito, K., Tsuji, T., Matsui, T. and Une, K., J. Nucl. Sci. Technol. 11, 22 (1974).CrossRefGoogle Scholar
López-Cuevas, J., Jones, H. and Atkinson, H.V., J. Am. Ceram. Soc. 83, 2913 (2000).CrossRefGoogle Scholar
Allen, B.C. and Kingery, W.D., AIME Trans. 215, 30 (1959).Google Scholar
Bruce, R.H., in Science of Ceramics, Volume 2, edited by Stewart, G.H. (Academic Press, London and New York, 1965), p. 359.Google Scholar
Yupko, V.L. and Gnesin, G.G., Porosh. Metall. 133, 77 (1974).Google Scholar
Lee, H.-K., Hwang, S.-H. and Lee, J.-Y., J. Mater. Sci. 28, 1765 (1993).CrossRefGoogle Scholar
Meschter, P.J., in Interfaces in Metal-Ceramics Composites, edited by Lin, R.Y., Arsenault, R.J., Martins, G.P. and Fishman, S.G. (The Minerals, Metals and Materials Society, Pennsylvania, 1989), p. 103.Google Scholar
Iseki, T., Maruyama, T. and Kameda, T., Proc. Br. Ceram. Soc. 34, 241 (1984).Google Scholar
Iseki, T. and Yano, T., in Austceram 88, edited by Sorrell, C.C. and Ben-Nissan, B. (Trans Tech Publications, Aedermannsdorf, Switzerland, 1988), p.1.Google Scholar
Chung, Y-S. and Iseki, T., J. Ceram. Soc. Jpn. 98, 573 (1990).CrossRefGoogle Scholar
Okamoto, T., ISIJ Int. 30, 1033 (1990).CrossRefGoogle Scholar
Gubbels, G.H.M., Heikinheimo, L.S.K. and Klomp, J.T., Z. Metallkd. 85, 828 (1994).Google Scholar
Kivilahti, J.K. and Van Loo, F.J.J., Mater. Sci. Forum 126-128, 209 (1993).CrossRefGoogle Scholar
Backhaus-Ricoult, M., Berich. Bunsen Gesell 93, 1277 (1989).CrossRefGoogle Scholar
Baumann, S.F., Brindley, P.K. and Smith, S.D., Metall. Trans. A 21, 1559 (1990).CrossRefGoogle Scholar
Kelkar, G.P. and Carim, A.H., J. Am. Ceram. Soc. 76, 1815 (1993).CrossRefGoogle Scholar
Kräutle, H., Nicolet, M.-A. and Mayer, J. W., Phys. Status Solidi 20A, K33 (1973).CrossRefGoogle Scholar
Holmberg, B., Acta Chem. Scand. 16, 1245 (1962).CrossRefGoogle Scholar
Hillel, R., Berthet, M.P., Bouix, J. and Roche, A., J. Mater. Sci. 25, 3191 (1990).CrossRefGoogle Scholar
Goldstein, J.I., Choi, S.K., Van Loo, F.J.J., Bastin, G.F. and Metselaar, R., J. Am. Ceram. Soc. 78, 313 (1995).CrossRefGoogle Scholar
Maa, J.-S., Lin, C.-J., Liu, J.-H. and Liu, Y.-C., Thin Solid Films 64, 439 (1979).CrossRefGoogle Scholar
Berti, M., Drigo, A.V., Cohen, C., Siejka, J., Bentini, G.G., Nipoti, R. and Guerri, S., J. Appl. Phys. 55, 3558 (1984).CrossRefGoogle Scholar
Brillson, L.J., Slade, M.L., Richter, H.W., VanderPlas, H. and Fulks, R.T., J. Vac. Sci. Technol. A 4, 993 (1986).CrossRefGoogle Scholar
Taylor, J.A. and Desu, S.B., J. Am. Ceram. Soc. 72, 1947 (1989).CrossRefGoogle Scholar
W Russell, S., Strane, J.W., Mayer, J.W. and Wang, S.Q., J. Appl. Phys. 76, 257 (1994).CrossRefGoogle Scholar
Zeng, Y., Chen, L. and Alford, T.L., Appl. Phys. Lett. 76, 64 (2000).CrossRefGoogle Scholar
Sumida, M. and Kondoh, K., Mater. Trans. 46, 2135 (2005).CrossRefGoogle Scholar
Murray, J.L. and Wriedt, H.A., J. Phase Equilib. 8, 148 (1987).CrossRefGoogle Scholar
Grigorov, K.G., Grigorov, G.I., Drajeva, L., Bouchier, D., Sporken, R and Caudano, R, Vacuum 51, 153 (1998).CrossRefGoogle Scholar
Kelkar, G.P., Spear, K.E. and Carim, A.H., J. Mater. Res. 9, 2244 (1994).CrossRefGoogle Scholar
Ali, M., Knowles, K.M., Mallinson, P.M. and Fernie, J.A., Acta Mater. 103, 859 (2016).CrossRefGoogle Scholar
Klein, K. and Verheyden, L., J. Sci. Instrum. 44, 174 (1967).CrossRefGoogle Scholar
Klein, K. and Verheyden, L., J.Sci. Instrum. 44, 1059 (1967).CrossRefGoogle Scholar
Verheyden, L., Klein, K. and Kind, H., J. Sci. Instrum. (J. Phys. E) 1, 145 (1968).CrossRefGoogle Scholar
Klein, K. and Verheyden, L., in Special Ceramics 5, edited by Popper, P. (The British Ceramic Research Association, Stoke on Trent, UK, 1970), p. 235.Google Scholar