Published online by Cambridge University Press: 27 February 2020
Ion beam analyses were completed on single crystal LiD (lithium hydride with deuterium on the hydrogen sites) to determine products of hydrolysis with decarbonated H2O (with protium-hydrogen) in an inert gas. Rutherford backscattering spectrometry showed movement of oxygen into the bulk of LiD samples. Hydrolysis rates for the single crystal LiD showed relatively slow initial growth of an oxygen-containing layer. Final growth rates varied widely with H2O level, from 1010 to 1015 (atoms/cm2)/min. at 5.6 and 28 mmol/min. H2O respectively. Simulations of spectra show the hydrolysis product to be LiOH. Elastic recoil detection identifies the hydrogen in the hydroxide layer upon dosing with H2O (with natural, protiated hydrogen) as primarily protium. Micrographs showed island growth occurring initially, with convergence to a full-coverage hydrolysis layer.