Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T18:08:06.493Z Has data issue: false hasContentIssue false

Laser Ablation Synthesis of Hybrid Copper/Silver Nanocolloids for Prospective Application as Nanoantimicrobial Agents for Food Packaging

Published online by Cambridge University Press:  10 May 2016

Rosaria Anna Picca*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Anna Di Maria
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Lenka Riháková
Affiliation:
RCPTM, Joint Laboratory of Optics UP and Institute of Physics AS CR, Palacky University, Olomouc, Czech Republic.
Annalisa Volpe
Affiliation:
IFN-CNR, CNR, Bari, Italy. Dipartimento Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Maria Chiara Sportelli
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Pietro Mario Lugarà
Affiliation:
IFN-CNR, CNR, Bari, Italy. Dipartimento Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Antonio Ancona*
Affiliation:
IFN-CNR, CNR, Bari, Italy.
Nicola Cioffi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.
*
*corresponding authors: rosaria.picca@uniba.it (R.A.P.), antonio.ancona@uniba.it (A.A.)
*corresponding authors: rosaria.picca@uniba.it (R.A.P.), antonio.ancona@uniba.it (A.A.)
Get access

Abstract

This work is focused on the laser ablation synthesis of Cu/Ag nanocolloids in chitosan-based aqueous solution using a flow cell. A two-step process using femtosecond laser pulses was applied to consecutively ablate each metal. As-prepared nanomaterials were morphologically and spectroscopically characterized by Transmission Electron Microscopy, UV-Vis and X-ray Photoelectron spectroscopies. Application of Cu/Ag nanomaterials is envisaged as antibacterial materials for food packaging.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Navas, M. P. and Soni, R. K., Plasmonics 10, 681 (2015).Google Scholar
Chen, Y., Wu, H., Li, Z., Wang, P., Yang, L., and Fang, Y., Plasmonics 7, 509 (2012).Google Scholar
Singh, S., Joshi, H. C., Srivastava, A., Sharma, A., and Verma, N., Colloids Surf. Physicochem. Eng. Asp. 443, 311 (2014).CrossRefGoogle Scholar
Lee, J.-P., Chen, D., Li, X., Yoo, S., Bottomley, L. A., El-Sayed, M. A., Park, S., and Liu, M., Nanoscale 5, 11620 (2013).Google Scholar
Butovsky, E., Perelshtein, I., Nissan, I., and Gedanken, A., Adv. Funct. Mater. 23, 5794 (2013).CrossRefGoogle Scholar
Grouchko, M., Kamyshny, A., and Magdassi, S., J. Mater. Chem. 19, 3057 (2009).Google Scholar
Tarasenko, N. V. and Butsen, A. V., Quantum Electron. 40, 986 (2010).CrossRefGoogle Scholar
Xu, S., Li, H., Wang, L., Yue, Q., Li, R., Xue, Q., Zhang, Y., and Liu, J., Eur. J. Inorg. Chem. 2015, 4731 (2015).Google Scholar
Jin, Y., Chen, F., Lei, Y., and Wu, X., ChemCatChem 7, 2377 (2015).Google Scholar
Choi, E., Lee, S., and Piao, Y., CrystEngComm 17, 5940 (2015).Google Scholar
Han, H., Fang, Y., Li, Z., and Xu, H., Appl. Phys. Lett. 92, 023116 (2008).Google Scholar
Yang, Guowei, Laser Ablation in Liquids - Principles and Applications in the Preparation of Nanomaterials (Pan Stanford Publishing Pte. Ltd., USA, 2012).Google Scholar
Bärsch, Niko, Jakobi, Jurij, Weiler, Sascha, and Barcikowski, Stephan, Nanotechnology 20, 445603 (2009).Google Scholar
Barcikowski, S. and Compagnini, G., Phys. Chem. Chem. Phys. 15, 3022 (2013).Google Scholar
Tsuji, T., Mizuki, T., Ozono, S., and Tsuji, M., J. Photochem. Photobiol. Chem. 206, 134 (2009).Google Scholar
Tilaki, R. M., Iraji zad, A., and Mahdavi, S. M., Appl. Phys. A 88, 415 (2007).Google Scholar
Amendola, V. and Meneghetti, M., Phys. Chem. Chem. Phys. 11, 3805 (2009).Google Scholar
Barcikowski, S., Hustedt, M., and Chichkov, B., Polimery 53, 657 (2008).Google Scholar
Tsuji, T., Kakita, T., and Tsuji, M., Appl. Surf. Sci. 206, 314 (2003).Google Scholar
Longano, D., Ditaranto, N., Cioffi, N., Niso, F., Sibillano, T., Ancona, A., Conte, A., Nobile, M. A., Sabbatini, L., and Torsi, L., Anal. Bioanal. Chem. 403, 1179 (2012).Google Scholar
Ancona, A., Sportelli, M. C., Trapani, A., Picca, R. A., Palazzo, C., Bonerba, E., Mezzapesa, F. P., Tantillo, G., Trapani, G., and Cioffi, N., Mater. Lett. 136, 397 (2014).Google Scholar
Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., Scrocco, C., Sabbatini, L., Contò, F., and Del Nobile, M. A., Innov. Food Sci. Emerg. Technol. 19, 158 (2013).CrossRefGoogle Scholar
Giorgetti, E., Marsili, P., Canton, P., Muniz-Miranda, M., Caporali, S., and Giammanco, F., J. Nanoparticle Res. 15, 1 (2012).Google Scholar
National Institute of Standards and Technology, NIST X-Ray Photoelectron Spectrosc. Database Version 41 (2012).Google Scholar