Published online by Cambridge University Press: 23 January 2017
Ca3Co4O9 (CCO) is a promising material for thermoelectric applications; however, this layered oxide shows a large number of physical features that complicate understanding and systematically improving its properties. A significant component of CCO’s behavior is its magnetotransport properties, particularly in the low temperature region where an incommensurate spin density wave affects its band structure. In order to improve understanding in this area, we perform low temperature magnetoresistance (MR) measurements on a bulk CCO sample. Field-less resistivity measurements confirm the conventional behavior of our sample, with a metal-to-insulator transition at approximately 70 K, and a shoulder indicating ferrimagnetism at 14 K. Resistivity vs. temperature under applied magnetic field show significant MR below around 35 K.