Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T01:13:28.419Z Has data issue: false hasContentIssue false

Mesoporous Nanofibers Mediated Targeted Anti-cancer Drug Delivery

Published online by Cambridge University Press:  03 May 2018

Dalong Li*
Affiliation:
Interdisiplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
Yilin Chen
Affiliation:
Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
Zhongyang Zhang
Affiliation:
Interdisiplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
Menglin Chen*
Affiliation:
Interdisiplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
*
*Correspondence: menglin@eng.au.dk
Get access

Abstract

Tumor tissue has different acidity compared to normal tissue. Localized drug delivery that release chemotherapeutic medications upon stimulation via pH changes is a promising strategy in cancer therapy for adjuvant therapies after surgical resection to reduce the risk of local recurrence. In this study, a mesoporous nanofibrous system with acidic pH-triggered “caps” has been for the first time developed for localized on-demand drug release to target tumor cells, without biological damage to normal cells while maintaining their structural integrity to support future tissue regeneration. Specifically, polyacrylic acid (PAA) was grafted on electrospun mesoporous silica nanofibers (MSFs) and the obtained PAA-MSFs allowed efficient drug loading at neural pH and on-demand releasing at acidic cancer subcellular compartments, based on pH-dependent electrostatic interactions associated with protonation/deprotonation of PAA. The The hybrid mesoporous nanofibers a low cytotoxicity to normal cells and a high killing efficiency to cancer cells. The system demonstrated a great potential as tumor targeting drug delivery system.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

D. Li and Y. Chen contributed equally to the work

References

REFERENCES

Schmidt, C., Nature 527, S10 (2015).CrossRefGoogle Scholar
Huang, P., Qian, X., Chen, Y., Yu, L., Lin, H., Wang, L. and Shi, J., J. Am. Chem. Soc. 139 (3), 1275 (2017).CrossRefGoogle Scholar
Tang, Q., Zhang, D., Cong, X., Wan, M., and Jin, L., Biomaterials 29 (17), 2673 (2008).CrossRefGoogle Scholar
Wolinsky, J. B., Liu, R., Walpole, J., Chirieac, L. R., Colson, Y. L., and Grinstaff, M. W., J. Control. Release 144 (3), 280 (2010).CrossRefGoogle Scholar
Yohe, S. T., Herrera, V. L. M., Colson, Y. L., and Grinstaff, M. W., J. Control. Release 162 (1), 92 (2012).CrossRefGoogle Scholar
Siravegna, G., Marsoni, S., Siena, S., and Bardelli, A., Nat. Rev. Clin. Oncol. 14, 531 (2017).CrossRefGoogle Scholar
Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., and Shakesheff, K. M., Chem. Rev. 99 (11), 3181 (1999).CrossRefGoogle Scholar
Thavasi, V., Singh, G., and Ramakrishna, S., Energy Environ. Sci. 1 (2), 205 (2008).CrossRefGoogle Scholar
Jiang, S., Duan, G., Kuhn, U., Mori, M., Altstdt, V., Yarin, A. L. and Greiner, A., Angew. Chemie 129 (12), 3333 (2017).CrossRefGoogle Scholar
Sill, T. J. and von Recum, H. A., Biomaterials 29 (13), 1989 (2008).CrossRefGoogle Scholar
Xu, X., Chen, X., Xu, X., Lu, T., Wang, X., Yang, L. and Jing, X., J. Control. Release 114 (3), 307 (2006).CrossRefGoogle Scholar
Ranganath, S. H. and Wang, C.-H., Biomaterials 29 (20), 2996 (2008).CrossRefGoogle Scholar
Changmin, H. and Wenguo, C., Adv. Healthc. Mater. 1 (6), 809 (2012).Google Scholar
Qiu, K., He, C., Feng, W., Wang, W., Zhou, X., Yin, Z., Chen, L., Wang, H. and Mo, X., J. Mater. Chem. B 1 (36), 4601 (2013).CrossRefGoogle Scholar
Yu, D., Li, X., Wang, X., Yang, J., Bligh, S. W. A., and Williams, G. R., ACS Appl. Mater. Interfaces 7 (33), 18891 (2015).CrossRefGoogle ScholarPubMed
Szentivanyi, A., Chakradeo, T., Zernetsch, H., and Glasmacher, B., Adv. Drug Deliv. Rev. 63 (4), 209 (2011).CrossRefGoogle Scholar
Li, H-J., Du, J-Z., Liu, J.., Du, X-J., Shen, S., Zhu, Y-H., Ye, X., Nie, S. and Wang, J., ACS Nano 10 (7), 6753 (2016).CrossRefGoogle Scholar
Tannock, I. F. and Rotin, D., Cancer Res. 49 (16); 4373 (1989).Google Scholar
Zheng, H., Zhang, Y., Liu, L., Wan, W., Guo, P., Nystrom, AM. and Zou, X., J. Am. Chem. Soc. 138 (3), 962 (2016).CrossRefGoogle Scholar
Volkan, Y., J, W. M.., A, A. E.., Colin, G., Robert, L., and G, A. D.., Adv. Mater.28 (1), 86 (2015).Google Scholar
Duan, Q., Cao, Y., Li, Y., Hu, X., Xiao, T., Lin, C., Pan, Y. and Wang, L., Am. Chem. Soc. 135 (28), 10542 (2013).CrossRefGoogle Scholar
Biabanikhankahdani, R., Alitheen, N. B. M., Ho, K. L., and Tan, W. S., Sci. Rep. 6, 37891 (2016).CrossRefGoogle Scholar
Xiao-Rong, S., Xiaoyong, W., Shu-Xian, Y., Cao, J., Li, S-H., Li, J., Liu, G.. Yang, H-H. and Chen, X., Adv. Mater. 27 (21), 3285 (2015).Google Scholar