Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T03:22:20.758Z Has data issue: false hasContentIssue false

Microstructure Characterization of Metal Mixed Oxides

Published online by Cambridge University Press:  09 November 2017

T. Kryshtab*
Affiliation:
Instituto Politécnico Nacional, ESFM, Departamento de Física, U.P.A.L.M., Av. IPN S/N, Edif. 9, CP07738, Ciudad de México, México.
H. A. Calderon
Affiliation:
Instituto Politécnico Nacional, ESFM, Departamento de Física, U.P.A.L.M., Av. IPN S/N, Edif. 9, CP07738, Ciudad de México, México.
A. Kryvko
Affiliation:
Instituto Politécnico Nacional, ESIME - Zacatenco, Departamento de Sistemas, U.P.A.L.M., Av. IPN S/N, Edif. Z-4, CP07738, Ciudad de México, México.
*
Get access

Abstract

The microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rinaldi, R., Fujiwara, F. Y., Hölderich, W. and Schuchardt, U., J. Catal. 244, 92 (2006).Google Scholar
Gerardin, C., Kostadinova, D., Sanson, N., Coq, B. and Tichit, D., Chem. Mater. 17, 6473 (2005).Google Scholar
Casenave, S., Martinez, H., Guimon, C., Auroux, A., Hulea, V., Cordoneanu, A. and Dumitriu, E., Thermochimica Acta. 379, 85 (2001).Google Scholar
Martínez –Lozano, G., Kryshtab, T., Hesiquio-Garduño, M. and Kryvko, A., Revista Mexicana de Física. 59, 186 (2013).Google Scholar
Krivoglaz, M. A., “Theory of X-ray and Thermal Neutron Scattering by Real Crystals”, (Plenun Press, New York, 1969).Google Scholar
Tiemeijer, P. C., Bischoff, M., Freitag, B. and Kisielowski, C., Ultramicroscopy 118, 35 (2012).Google Scholar
Kisielowski, C., Wang, L.-W., Specht, P., Calderon, H., Barton, B., Jiang, B., Kang, J. H. and Cieslinski, R., Phys. Rev. B88, 024305 (2013).Google Scholar
Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).Google Scholar
Hirsch, P., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., “Electron Microscopy of Thin Crystals”, ed Rebert, E. (Krieger Publishing Company, Malabar, FL., 1977).Google Scholar
Melo, F. and Morlanés, N., Catalysis Today 133-135, 383 (2008).Google Scholar
Guil-López, R., Parola, V. La., Peña, M. A. and Fierro, J. L. G., Catalysis Today, 116, 289 (2006).CrossRefGoogle Scholar