Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T11:45:06.209Z Has data issue: false hasContentIssue false

Mo coordination and Thermal Stability of the Mo–Si3N4 Absorbers for Solar Selective Coatings

Published online by Cambridge University Press:  05 June 2017

C. Prieto*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 - Madrid, Spain
E. Céspedes
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 - Madrid, Spain
D. Hernández-Pinilla
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 - Madrid, Spain
A. Rodríguez-Palomo
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 - Madrid, Spain
O. Sánchez
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 - Madrid, Spain
F. Jiménez-Villacorta
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 - Madrid, Spain
E. Salas-Colera
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 - Madrid, Spain Spanish CRG beamline at the European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France.
Get access

Abstract

The study of the chemical stability of solar selective coatings (SSC) for concentrated solar power (CSP) becomes essential for their use at high temperatures. In this paper, the short range order around Mo in Mo-Si3N4 cermets is studied for the first time by X-ray absorption spectroscopy. The information obtained by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies gives new insights of the origin of the optical behavior of the cermets cermets after vacuum and air annealing treatments. The established optical and structural correlation becomes of great importance for the design and optimization of SSC for practical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kennedy, C.E., Review of Mid- to High Temperature Solar Selective Absorber Materials, Technical Report NREL/TP-520-31267 (National Renewable Energy Laboratory, Colorado, 2002) p. 9.CrossRefGoogle Scholar
Selvakumar, N. and Barshilia, H.C., Sol. Energy Mater. Sol. Cells 98, (2012) 1.CrossRefGoogle Scholar
Zhang, Q.-C. and Mills, D.R., Sol. Energy Mater. Sol. Cells 27 (1992) 273.CrossRefGoogle Scholar
Esposito, S., Antonaia, A., Addonizio, M.L. and Aprea, S., Thin Solid Films 517 (2009) 6000.CrossRefGoogle Scholar
Yue, S., Yueyan, S. and Fengchun, W., Sol. Energy Mater. Sol. Cells 77 (2003) 393.CrossRefGoogle Scholar
Zhang, Q.-C., Sol. Energy Mater. Sol. Cells 62 (2000) 63.CrossRefGoogle Scholar
Céspedes, E., Wirz, M., Sánchez-García, J.A., Alvarez-Fraga, L., Escobar-Galindo, R. and Prieto, C., Sol. Energy Mater. Sol. Cells 122 (2014) 217.CrossRefGoogle Scholar
Shön, J.H., Binder, G. and Bucher, E., Sol. Energy Mater. Sol. Cells 33 (1994) 403.CrossRefGoogle Scholar
Xue, Y., Wang, C., Sun, Y., Wang, W., Wu, Y. and Ning, Y., Phys. Status Solidi A 211 (2014) 1519.CrossRefGoogle Scholar
Hernández-Pinilla, D., Rodríguez-Palomo, A., Álvarez-Fraga, L., Céspedes, E., Prieto, J. E., Muñoz-Martín, A. and Prieto, C., Sol. Energy Mater. Sol. Cells 152 (2016) 141.CrossRefGoogle Scholar
Cao, F., Tang, L., Li, Y., Litvinchuk, A.P., Bao, J. and Ren, Z., Sol. Energy Mater. Sol. Cells 160 (2017) 12.CrossRefGoogle Scholar
Barshilia, H.C., Selvakumar, N., Rajam, K.S., Sridhara Rao, D.V., Muraleedharan, K. and Biswas, A., Appl. Phys. Lett. 89 (2006) 191909.CrossRefGoogle Scholar
Biswas, A., Bhattacharya, D., Barshilia, H.C., Selvakumar, N. and Rajam, K.S., Appl. Surf. Sci. 254 (2008) 1694.CrossRefGoogle Scholar
Barshilia, H.C., Sol. Energy Mater. Sol. Cells 92 (2008) 495.CrossRefGoogle Scholar
Selvakumar, N., Manikandanath, N.T., Biswas, A. and Barshilia, H.C., Sol. Energy Mater. Sol. Cells, 102 (2012) 86.CrossRefGoogle Scholar
Valleti, K., Krishna, D.M. and Joshi, S.V., Sol. Energy Mater. Sol. Cells, 121 (2014) 14.CrossRefGoogle Scholar
Selvakumar, N., Santhoshkumar, S., Basu, S., Biswas, A. and Barshilia, H.C., Sol. Energy Mater. Sol. Cells, 109 (2013) 97.CrossRefGoogle Scholar
Klementiev, K. V., J. Phys. D: Appl. Phys. 34 (2001) 209.CrossRefGoogle Scholar
Stern, E. A., in X-Ray Absorption Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by D.C. Koningsberger and R. Prins (Wiley, New York, 1988). p. 3.Google Scholar
Ankudinov, A.L., Ravel, B., Rehr, J.J. and Conradson, S.D., Phys. Rev. B 58 (1998) 7565.CrossRefGoogle Scholar
Rehr, J.J. and Albers, R.C., Rev. Mod. Phys. 72 (2000) 621.CrossRefGoogle Scholar
Liu, Z., Meng, M., Fu, Y., Jiang, M., Hu, T., Xie, Y., Liu, T., Mat. Lett. 54 (2002) 364.CrossRefGoogle Scholar
Teo, B. K., EXAFS. Basic Principles and Data Analysis (Springer-Verlag, Berlin, 1986) p. 165.CrossRefGoogle Scholar
Tsu, D.V., Lucovsky, G., Mantini, M.J., Chao, S.S, J. Vac. Sci. Technol., A 5 (1987) 1998.CrossRefGoogle Scholar
Vila, M., Cáceres, D., Prieto, C., J. Appl. Phys. 94 (2003) 7868.CrossRefGoogle Scholar