Published online by Cambridge University Press: 16 May 2017
Zinc oxide/silicon nanowires (ZnO/SiNWs) nanocomposites is a promising material for heterojunction solar cells. They combine the low-reflectivity of SiNWs, where photogenerated charge carriers are produced and harvested, and the high transparency of ZnO, which serves as a functional transparent conductive electrode. In this paper, we present a study of the anti-reflective properties of ZnO/SiNWs core-shell nanostructures. SiNWs were fabricated by a two-step metal-assisted chemical etching and coated with ZnO by electrochemical deposition. Particularly, the change in the specular reflectance of ZnO/SiNWs nanocomposites as a function of thermal annealing temperature under ambient atmosphere is investigated. First, it was shown that the reflectance in the wavelength range of 400-1000 nm of as-synthesized ZnO/SiNWs nanocomposites increases when compared to the bare SiNWs formed from Si wafers with resistivity of 0.3 and 12 Ω∙cm by an 0.51 % and 0.47 %, respectively. Second, it was found that annealed ZnO/SiNWs had a 0.26 % and 0.17 % lower reflectance in the wavelength range of 400-1000 nm than as-synthesized ZnO/SiNWs and yet higher than bare SiNWs. Potential causes such results are discussed in the context of existing literature.