Published online by Cambridge University Press: 30 January 2018
The aim of this research is to ameliorate the dispersion of pristine and functionalized Carbon Nanotubes (CNTs) into polystyrene with hydroxyl end groups (PSOH) matrices using low magnetic fields. The Multi-Walled Carbon Nanotubes (MWCNTs) were synthesized by chemical vapor deposition (CVD) using benzene as carbon source; to produce CNTs with and without functional groups two catalysts were used (stainless steel and ferrocene). The obtained nanotubes contained iron nanoparticles inside. PSOH were synthesized using styrene as monomer, azobisisobutyronitrile as initiator and 2-MeOH as chain transfer agent. The MWCNTs-PSOH matrices were formed using 1.6 wt % of carbon nanotubes into PSOH and ultrasonic mixing for 30 min. The mixing materials were poured into containers and dry at room temperature. While the material was drying, constant magnetic fields of 0.24 T were being applied for 50 min. The MWCNTs-PSOH composites were analysed by SEM, FTIR and Raman spectroscopy. SEM micrographs showed that MWCNTs without functional groups were incorporated in the middle of PSOH. The MWCNTs functionalized perform differently; a better dispersion through the entire polymer matrix was achieved, because the polymer embedded the CNTs. FTIR and Raman spectroscopy showed chemical interaction between PSOH and MWCNTs functionalized. The CNTs dispersion into PSOH was ameliorated through the use of low magnetic fields and functionalization.