Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T06:32:58.842Z Has data issue: false hasContentIssue false

Nanoimprinted SERS Sensors for Chemical and Biological Detection

Published online by Cambridge University Press:  16 January 2017

Guinevere Strack
Affiliation:
Bio-Science & Technology Team, Materials Science and Engineering Branch, US Army Natick Soldier RDEC, Natick, MA 01760, U.S.A. Department of Civil & Environmental Engineering, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.
Michaela Fitzgerald
Affiliation:
Bio-Science & Technology Team, Materials Science and Engineering Branch, US Army Natick Soldier RDEC, Natick, MA 01760, U.S.A. Department of Civil & Environmental Engineering, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.
Junwei Su
Affiliation:
Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.
Margery G. H. Pelletier
Affiliation:
Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.
Peter Gaines
Affiliation:
Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.
Hongwei Sun
Affiliation:
Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.
Pradeep Kurup*
Affiliation:
Department of Civil & Environmental Engineering, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.
Ravi Mosurkal*
Affiliation:
Bio-Science & Technology Team, Materials Science and Engineering Branch, US Army Natick Soldier RDEC, Natick, MA 01760, U.S.A.
Get access

Abstract

Herein, we demonstrate a facile, rapid, and scalable method to fabricate polymer-based gratings for surface-enhanced Raman spectroscopy (SERS) sensors. To accomplish this, epoxy nanostripe arrays on silicon substrates were prepared using thermal annealing and UV-cross-linking. After preparation of the nanostripe arrays, the surface was briefly treated with oxygen plasma, which decreased the surface energy and enabled the growth of AgNPs on the polymer surface using a simple, low-cost, aqueous-based synthesis procedure. The SERS substrates exhibited a detection limit of ∼1 pM using rhodamine 6G (R6G). In addition, preliminary work with E. coli DH5 showed that the nanoimprinted substrates can be used to obtain Raman spectra of washed bacteria cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, J., Li, Y., Huang, K., Wang, P., He, L., Carter, K.R., Nugen, S.R., ACS Appl. Mater. Interfaces, 7 (2015) 2210622113.Google Scholar
Chou, S.-Y., Yu, C.-C., Yen, Y.-T., Lin, K.-T., Chen, H.-L., Su, W.-F., Anal. Chem, 87 (2015) 60176024.CrossRefGoogle Scholar
Chu, H., Huang, Y., Zhao, Y., Appl. Spectrosc., 62 (2008) 922931.CrossRefGoogle Scholar
Craig, A.P., Franca, A.S., Irudayaraj, J., Annu. Rev. Food Sci. Technol., 4 (2013) 369380.Google Scholar
David, C., Guillot, N., Shen, H., Toury, T., Lamy de la Chapelle, M., Nanotechnology, 21 (2010) 16.Google Scholar
Geissler, M., Li, K., Cui, B., Clime, L., Veres, T., J. Phys. Chem. C, 113 (2009) 1729617300.CrossRefGoogle Scholar
Gill, H.S., Thota, S., Li, L., Ren, H., Mosurkal, R., Kumar, J., Sens. Actuators, B, 220 (2015) 794798.Google Scholar
Lee, C.-W., Wu, J.-K., Tseng, F.-G., in Micro Electro Mechanical Systems (MEMS), 28th IEEE International Conference on, edited by Brugger, J. and Wijingaart, W.v.d., (IEEE Symp. Proc., Estoril, Portugal, 2015) pp. 223225.Google Scholar
Rao, V.K., Radhakrishnan, T.P., ACS Appl. Mater. Interfaces, 7 (2015) 1276712773.Google Scholar
Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C., Biotechnol. Adv., 28 (2010) 232254.Google Scholar
Zhang, X., Yonzon, C.R., Van Duyne, R.P., in Plasmonics: Metallic Nanostructures and Their Optical Properties edited by Halas, N.J. (SPIE Symp. Proc., San Diego, California, 2003) pp. 8291.CrossRefGoogle Scholar
Kraft, M., Lou, Y., Maier, S.A., Pendry, J.B., Phys. Rev. X, 5 (2015) 031209.Google Scholar
Lu, J., Petre, C., Yablonovitch, E., Conway, J., Opt. Soc. Am, 24 (2007) 22682272.Google Scholar
Maniatis, T., Fritsch, E.F., Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab Press, Cold Spring Harbor, New York, 1982.Google Scholar
Liu, T.-T., Lin, Y.-H., Hung, C.-S., Liu, T.-J., Chen, Y., Huang, Y.-C., Tsai, T.-H., Wang, H.-H., Wang, D.-W., Wang, J.-K., Wang, Y.-L., Lin, C.-H., PLoS ONE, 4 (2009).Google Scholar
Ankamwar, B., Sur, U.K., Das, P., Anal. Methods., 8 (2016) 23352340.Google Scholar
Premasiri, W.R., Lee, J.C., Sauer-Budge, A., Théberge, R., Costello, C.E., Ziegler, L.D., Anal. Bioanal. Chem., 408 (2016) 46314647.Google Scholar
Kahraman, M., Keseroglu, K., Culha, M., Appl. Spectrosc., 65 (2011) 500506.Google Scholar