Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T16:58:35.721Z Has data issue: false hasContentIssue false

Nanoscale Friction of Graphene

Published online by Cambridge University Press:  02 July 2018

F. Ptak
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro, 22453-900, Brazil
C. M. Almeida
Affiliation:
Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Duque de Caxias, Rio de Janeiro, 22250-000, Brazil
R. Prioli*
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marquês de São Vicente 225, Rio de Janeiro, 22453-900, Brazil
Get access

Abstract

Despite being one of the oldest phenomena known to mankind and its vast use, there still are open questions about the frictional process between two surfaces, especially at the nanometer scale, such as the energy dissipation mechanism, the influence of the crystallographic orientation and the correlation between macroscopic and microscopic scales. In this work, we analyze the interaction between a sharp tip and graphene by friction force microscopy. The graphene surface roughness and adhesion forces with the microscope tip were measured. Neither roughness nor adhesion were observed to influence the friction forces. The scanning velocity dependence of friction was also measured for a different number of layers. The friction forces were observed to increase with the scanning velocity until a critical velocity is achieved by which we have estimated the effective interaction potential between the tip and the graphene surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K. S., Geim, A. K., Morozv, S. V., Jiang, D., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Zang, X., Zhou, Q., Chang, J., Liu, Y. and Li, L.., Microelectron. Eng., 132, 192 (2015).CrossRefGoogle Scholar
Kim, K.-S., Lee, H.-J., Lee, Ch., Lee, S.-K., Jang, H., Ahn, J.-H., Kim, J.-H. and Lee, H.-J., ACS Nano 5, 5107 (2011).CrossRefGoogle Scholar
Berman, D., Erdemir, A. and Sumant, A. V., Mater. Today 17, 31 (2014).CrossRefGoogle Scholar
Mo, Y., Turner, K. T. and Szlufarska, I., Nature 457, 1116 (2009).CrossRefGoogle Scholar
Filleter, T., McChesney, J. L., Bostwick, A., Rotenberg, E., Emtsev, K. V., Seyller, Th., Horn, K. and Bennewitz, R., Phy. Rev. Lett. 102, 086102 (2009).CrossRefGoogle Scholar
Lee, Ch., Li, Q., Kalb, W., Liu, X.-Z., Carpick, R. W. and Hone, J., Science 328, 76 (2010).CrossRefGoogle Scholar
Li, Q., Lee, Ch., Carpick, R. W. and Hone, J., Phys. Status Solidi B 247, 2909 (2010).CrossRefGoogle Scholar
Filleter, T. and Bennewitz, R., Phys. Rev. B 81, 155412 (2010).CrossRefGoogle Scholar
Choi, J. S., Kim, J.-S., Byun, I.-S., Lee, D. H., Lee, M. J., Park, B. H., Lee, Ch., Yoon, D., Cheong, H., Lee, K. H., Son, Y.-W., Park, J. Y. and Salmeron, M., Science 333, 607 (2011).CrossRefGoogle Scholar
Almeida, C. M., Carozo, V., Prioli, R. and Achete, C. A., J. Appl. Phys. 110, 086101 (2011).CrossRefGoogle Scholar
Cho, D.-H. and Wang, L., Kim, J.-S., Lee, G.-H., Kim, E. S., Lee, S., Lee, S. Y., Hone, J. and Lee, Ch., Nanoscale 5, 3063 (2013).CrossRefGoogle Scholar
Paolicelli, G., Tripathi, M., Corradini, V., Candini, A. and Valeri, S., Nanotechnology 26, 055703 (2015).CrossRefGoogle Scholar
Almeida, C. M., Prioli, R., Fragneaud, B., Cançado, L. G., Paupitz, R., Galvão, D. S., De Cicco, M., Menezes, M. G., Achete, C. A. and Capaz, R. B., Sci. Rep. 6, 31569 (2016).CrossRefGoogle Scholar
Ye, Z., Tang, Ch., Dong, Y. and Martini, A., J. Appl. Phys. 112, 116102 (2012).CrossRefGoogle Scholar
Smolyanitsky, A., Killgore, J. P. and Tewary, V. K., Phys. Rev. B 81, 035412 (2012).CrossRefGoogle Scholar
Dong, Y., J. Phys. D 47, 055305 (2014).CrossRefGoogle Scholar
Li, S., Li, Q., Carpick, R. W., Gumbsch, P., Liu, X. Z., Ding, X., Sun, J. and Li, J., Nature 539, 541 (2016).CrossRefGoogle Scholar
Ye, Z., Balcanci, A., Martini, A. and Baykara, Z., Phys. Rev. B 96, 115401 (2017).CrossRefGoogle Scholar
Liu, E., Blanpain, B., Celis, J. P., Wear 192, 141150 (1996).CrossRefGoogle Scholar
Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E. and Brune, H., Phys. Rev. Lett. 91, 084502 (2003).CrossRefGoogle Scholar