Published online by Cambridge University Press: 26 May 2020
Photodetectors based on a hybrid structure of graphene sensitized with lead selenide (PbSe) colloidal quantum dots (QDs) effective in the near-infrared (NIR) region with high responsivity were investigated. Colloidal PbSe nanocrystals were synthesized via a hot injection method. The bandgap of the synthesized nanocrystals was determined to be 0.68 eV by measuring their optical absorbance spectrum. Photodetectors based on PbSe QDs were investigated to examine their functionality. These devices were characterized by measuring the current-voltage curves in the dark and light and the spectral response spectrum. A photodetector was fabricated using a multilayer mechanically exfoliated graphene on a Si/SiO2 substrate with a PbSe QDs layer on top. A responsivity and detectivity of 1265A/W and 3.4 *1010cm.Hz0.5/W respectively were calculated based on current-voltage measurements.