Published online by Cambridge University Press: 19 February 2018
Immobilization of bulk liquid high level radioactive waste (HLW) in Synroc ceramic is well-known reliable way for final isolation of dangerous long-lived radionuclides from biosphere. The alternative method of Synroc-like ceramic synthesis has been proposed. Radionuclide incorporation into crystalline titanate host-phases can be provided as a result of direct radionuclide sorption from liquid HLW using non-selective sorbent – layered hydrazinium titanate (LHT-9). Such an approach allows excluding expensive multi-stage procedure of precursor preparation. The precipitate obtained after sorption can be easily transformed into Synroc-like ceramic by cold pressing followed with sintering in air at 1000-1200°C. The highly radioactive samples of titanate ceramic loaded with real HLW have been synthesized and preliminary studied at KRI hot-cell facility. Chemical durability of this sample has been studied using static leach test in distilled water at 90°C and the leach rates for 154Eu, 241Am, 244Cm were (in g·m-2·day-1) from 2·10-4 to 5·10-3. Normalised 137Cs mass loss was 0.3 g·m-2 for 110 days at the same conditions.