Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T08:19:43.245Z Has data issue: false hasContentIssue false

Normalized Selectivity and Separation Efficiency of Phosphonated Graphene Oxide and Sulfonated Poly(styrene-isobutylene-styrene) Composite Membranes

Published online by Cambridge University Press:  29 November 2018

Eduardo Ruiz-Colón*
Affiliation:
Chemical Engineering Dept., University of Puerto Rico, Mayagüez, PR00681-9000
David Suleiman
Affiliation:
Chemical Engineering Dept., University of Puerto Rico, Mayagüez, PR00681-9000
Get access

Abstract

Phosphonated graphene oxide (pGO) has been incorporated to sulfonated poly(styrene-isobutylene-styrene) (SO3H SIBS) to prepare polymer nanocomposite membranes (PNMs) for direct methanol fuel cell (DMFC) and chemical and biological protective clothing (CBPC) applications. The performance of the membranes was evaluated per SIBS sulfonation level (i.e. 38, 61, and 90 mole %), filler type (i.e. GO and pGO) and filler loading (i.e. 0.1, 0.5 and 1.0 wt.%). The transport properties (i.e. proton conductivity and methanol and vapor permeability) were determined to assess the performance of the PNMs per each application. The ionic interactions between the phosphonic and sulfonic groups (i.e. PO3H2 and SO3H, respectively) altered the pathways of SO3H SIBS, influencing the transport of permeants through the membranes. SIBS 61 pGO 0.1 presented the highest separation efficiency and a DMFC performance comparable to the state-of-the-art Nafion®, indicating that this membrane could potentially be implemented as protective fabric as well as functioning for fuel cell applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fornasiero, F., Water vapor transport in carbon nanotube membranes and application in breathable and protective fabrics, Curr. Opin. Chem. Eng. 16 (2017) 18. doi:10.1016/j.coche.2017.02.001.CrossRefGoogle Scholar
Łapka, P., Furman, P., Evaluation of a human skin surface temperature for the protective clothing – Skin system based on the protective clothing – skin imitating material results, Int. J. Heat Mass Transf. 114 (2017) 13311340. doi:10.1016/j.ijheatmasstransfer.2017.06.033.Google Scholar
Lu, X., Nguyen, V., Zeng, X., Elliott, B.J., Gin, D.L., Selective rejection of a water-soluble nerve agent stimulant using a nanoporous lyotropic liquid crystal-butyl rubber vapor barrier material: evidence for a molecular size-discrimination mechanism, J. Memb. Sci. 318 (2008) 397404. doi:10.1016/j.memsci.2008.03.006.CrossRefGoogle Scholar
Barreto, S.M.A., Suleiman, D., Synthesis and characterization of sulfonated poly(styrene-isoprene-styrene): effects of linear vs. branched morphology and counter-ion substitution, J. Memb. Sci. 362 (2010) 471477. doi:10.1016/j.memsci.2010.06.061.CrossRefGoogle Scholar
Dodds, P.E., Staffell, I., Hawkes, A.D., Li, F., Hydrogen and fuel cell technologies for heating: A review, Int. J. Hydrogen Energy. (2014) 119. doi:10.1016/j.ijhydene.2014.11.059.Google Scholar
Van Biert, L., Godjevac, M., Visser, K., Aravind, P. V, A review of fuel cell systems for maritime applications, J. Power Sources. 327 (2016) 345364. doi:10.1016/j.jpowsour.2016.07.007.CrossRefGoogle Scholar
Wilberforce, T., Alaswad, A., Palumbo, A., Dassisti, M., Olabi, A.G., Bari, P., Advances in stationary and portable fuel cell applications, Int. J. Hydrogen Energy. (2016) 114. doi:10.1016/j.ijhydene.2016.02.057.Google Scholar
Rahman, M.R., Allan, J.T.S., Ghavidel, M.Z., Prest, L.E., Saleh, F.S., Easton, E.B., The application of power-generating fuel cell electrode materials and monitoring methods to breath alcohol sensors, Sensors Actuators B. Chem. 228 (2016) 448457. doi:10.1016/j.snb.2016.01.061.CrossRefGoogle Scholar
Ong, B.C., Kamarudin, S.K., Basri, S., Direct liquid fuel cells: A review, Int. J. Hydrogen Energy. 42 (2017) 1014210157. doi:10.1016/j.ijhydene.2017.01.117.CrossRefGoogle Scholar
Zakil, F.A., Kamarudin, S.K., Basri, S., Modified Nafion membranes for direct alcohol fuel cells: An overview, Renew. Sustain. Energy Rev. 65 (2016) 841852. doi:10.1016/j.rser.2016.07.040.CrossRefGoogle Scholar
Parthiban, V., Akula, S., Peera, S.G., Islam, N., Sahu, A.K., Proton conducting Nafion-sulfonated graphene hybrid membranes for direct methanol fuel cells with reduced methanol crossover, Energy & Fuels. 30 (2016) 725734. doi:10.1021/acs.energyfuels.5b02194.CrossRefGoogle Scholar
Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I., Microbial fuel cells: From fundamentals to applications. A review, J. Power Sources. 356 (2017) 225244. doi:10.1016/j.jpowsour.2017.03.109.CrossRefGoogle ScholarPubMed
Kraytsberg, A., Ein-Eli, Y., Review of advanced materials for proton exchange membrane fuel cells, Energy & Fuels. 28 (2014) 73037330. doi:10.1021/ef501977k.CrossRefGoogle Scholar
Avilés-Barreto, S.L., Suleiman, D., Transport properties of sulfonated poly (styrene-isobutylene-styrene) membranes with counter-ion substitution, J. Appl. Polym. Sci. 129 (2013) 22942304. doi:10.1002/app.38952.CrossRefGoogle Scholar
Avilés-Barreto, S.L., Suleiman, D., Effect of single-walled carbon nanotubes on the transport properties of sulfonated poly(styrene-isobutylene-styrene) membranes, J. Memb. Sci. 474 (2015) 92102. doi:10.1016/j.memsci.2014.09.049.CrossRefGoogle Scholar
Ortiz-Negrón, A., Lasanta-Cotto, N., Suleiman, D., Imidazolium ionic liquid incorporation on sulfonated poly(styrene- isobutylene-styrene) proton exchange membranes, J. Appl. Polym. Sci. 44900 (2017) 113. doi:10.1002/app.44900.Google Scholar
Ortiz-Negrón, A., Suleiman, D., The effect of TiO2 nanoparticles on the properties of sulfonated block copolymers, J. Appl. Polym. Sci. 132 (2015) 117. doi:10.1002/app.42651.CrossRefGoogle Scholar
Ruiz-Colon, E., Suleiman, D., Perez-Perez, M., Synthesis and Characterization of Novel Phosphonated and Sulfonated Poly (Styrene – Isobutylene – Styrene) for Fuel Cell and Protective Clothing Applications, J. Polym. Sci. Part A Polym. Chem. 56 (2018) 14241435. doi:10.1002/pola.29023.CrossRefGoogle Scholar
Aher, A., Cai, Y., Majumder, M., Bhattacharyya, D., Synthesis of graphene oxide membranes and their behavior in water and isopropanol, Carbon N. Y. 116 (2017) 145153. doi:10.1016/j.carbon.2017.01.086.CrossRefGoogle Scholar
Zambare, R.S., Dhopte, K.B., Patwardhan, A. V., Nemade, P.R., Polyamine functionalized graphene oxide polysulfone mixed matrix membranes with improved hydrophilicity and anti-fouling properties, Desalination. 403 (2017) 2435. doi:10.1016/j.desal.2016.02.003.CrossRefGoogle Scholar
Wu, W., Wang, J., Liu, J., Chen, P., Zhang, H., Huang, J., Intercalating ionic liquid in graphene oxide to create efficient and stable anhydrous proton transfer highways for polymer electrolyte membrane, Int. J. Hydrogen Energy. 42 (2017) 1140011410. doi:10.1016/j.ijhydene.2017.01.129.CrossRefGoogle Scholar
Abouzari-Lotf, E., Ghassemi, H., Shockravi, A., Zawodzinski, T., Phosphonated poly(arylene ether)s as potential high temperature proton conducting materials, Polymer (Guildf). 52 (2011) 47094717. doi:10.1016/j.polymer.2011.08.020.CrossRefGoogle Scholar
Dimitrov, I., Takamuku, S., Jankova, K., Jannasch, P., Hvilsted, S., Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes, J. Memb. Sci. 450 (2014) 362368. doi:10.1016/j.memsci.2013.09.016.CrossRefGoogle Scholar
Li, W., Shen, C., Zhang, X., Kong, G., Chen, C., Preparation of high-temperature proton exchange membranes based on aminopropyltriethoxysilane and amino trimethylene phosphonic acid, Mater. Res. Innov. 20 (2016) 524529. doi:10.1179/1433075X15Y.0000000081.CrossRefGoogle Scholar
Jung, K., Ji, L., Pourdeyhimi, B., Zhang, X., Structure – property relationships of polymer-filled nonwoven membranes for chemical protection applications, J. Memb. Sci. 361 (2010) 6370. doi:10.1016/j.memsci.2010.06.010.CrossRefGoogle Scholar
Ruiz-Colon, E., Suleiman, D., Synthesis and Characterization of Phosphonated Graphene Oxide and Sulfonated Poly ( styrene- isobutylene-styrene ) Composite Membranes, (2018). doi:10.1557/adv.2018.CrossRefGoogle Scholar
Elabd, Y.A., Napadensky, E., Sloan, J.M., Crawford, D.M., Walker, C.W., Triblock copolymer ionomer membranes Part I . methanol and proton transport, J. Memb. Sci. 217 (2003) 227242. doi:10.1016/S0376-7388(03)00127-3.CrossRefGoogle Scholar
Elabd, Y.A., Napadensky, E., Walker, C.W., Winey, K.I., Transport properties of sulfonated poly(styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities, Macromolecules. 39 (2006) 399407. doi:10.1021/ma051958n.CrossRefGoogle Scholar
Pérez-Pérez, M., Suleiman, D., Effect of block composition on the morphology, hydration, and transport properties of sulfonated PS-b-PEGPEM-b-PS, J. Appl. Polym. Sci. 133 (2016) 112. doi:10.1002/app.44343.CrossRefGoogle Scholar