No CrossRef data available.
Published online by Cambridge University Press: 21 April 2020
An atmospheric pressure microwave plasma tubular furnace apparatus (MPTF) for the rapid synthesis of carbon nanotubes (CNTs) has been developed. CNTs have been synthesized by an Argon-Hydrogen microwave plasma using ethanol vapor as carbon source with the furnace temperature of 800 °C at the atmospheric pressure. The synthesized CNTs have been analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and are shown to be multi-walled and tangled and chemically connected to form a high-density network with the diameter at the range of 25-70 nm. The measurement of X-ray photoelectron spectroscopy (XPS) indicates that a large number of oxygenated functional groups grown on the surface of CNTs. These properties proved that the CNTs could be utilized as nanoscale templates for various applications.