Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T22:29:52.230Z Has data issue: false hasContentIssue false

Optimising the Rectification Ratio of Schottky Diodes in n-SiC and n-Si by TCAD

Published online by Cambridge University Press:  16 May 2016

Hiep N. Tran
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Tuan A. Bui
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Geoff K. Reeves
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Patrick W. Leech*
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Jim G. Partridge
Affiliation:
School of Applied Sciences, RMIT University, Melbourne Victoria, Australia
Mohammad S. N. Alnassar
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Anthony S. Holland
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Get access

Abstract

Finite element modelling has been used to optimise the current/ voltage (I/V) characteristics of metal/ n-SiC and metal/ n-Si diodes incorporating a thin interfacial layer. The electrical properties of the diodes have been examined in relation to the polytype of SiC (3H, 4H or 6C), the doping level, NA, (1015 - 1018cm3) of the substrate, the defect state density, Dit and the work function of the Schottky metal, Φm. The modelling by Technology Computer-Aided Design (TCAD) has shown that the presence of an interfacial insulating layer with a thickness of 1.0 nm has reduced the reverse leakage current of the diode by a factor of ∼102 in Si and 1013 (from 10-19 A to 10-6 A) for SiC with only a minor reduction (∼ 0.8 times) in the forward current in SiC. The properties of the diodes have been modelled at room temperature without thermal annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Detavernier, C., Van Meirhaeghea, R. L., Donaton, R., Maex, K. and Cardon, F., J. Appl. Phys. 84(6), 3226 (1998).Google Scholar
Alialy, S., Tecimer, H., Uslu, H. and Altindal, S., J Nanomed. Nanotechol. 4(3) 1 (2013).Google Scholar
Chand, S. and Bala, S., Physica B 390, 179 (2007).CrossRefGoogle Scholar
Alnassar, M.S.N., Leech, P.W., Reeves, G.K., Holland, A.S., Lau, D.W.M., McCulloch, D.G., Tran, H.N. and Partridge, J.G., MRS On-line Proc. Library, 1786 (2015).Google Scholar
Roccaforte, F., La Via, F., Raineri, V., Musumeci, P., Calcagno, L. and Condorelli, G.G., Appl. Phys.A, (2002).Google Scholar
Takamatsu, S., Nomura, I., Shiraishi, T. and Kishino, K., J. Cryst. Growth 425, 199 (2015).Google Scholar
Ishida, Y., Chen, C., Hagihara, M., Yamakami, T., Hayashibe, R., Abe, K. and Kamimura, K., Jpn. J. Appl. Phys. 47(1), 676 (2008).Google Scholar
Yamakami, T., Suzuki, S., Henmi, M., Murata, Y., Hayashibe, R. and Kamimura, K., Jpn. J. Appl. Phys., 50, 01BG02-1 (2011).Google Scholar
Kumta, A., Rusli, and Xia, J.H., Appl. Phys. Lett., 94, 233505 (2009).Google Scholar
Vobecký, J., Hazdra, P., Záhlava, V., Mihaila, A. and Berthou, M., Solid-State Electron 94, 32 (2014).Google Scholar
Sochacki, M., Kolendo, A., Szmidt, J. and Werbowy, A., Solid-State Electron, 49 585 (2005).CrossRefGoogle Scholar
Gupta, S.K., Shankar, B., Shankar, B., Taube, W.R., Singh, J. and Akhtar, J., Physica B, 434, 44 (2014).Google Scholar
Zhao, J.H., Sheng, K. and Lebron-Velilla, R.C., Int J High Speed Electron Syst, 15(4), 821 (2005).Google Scholar
Neudeck, P.G., Larkin, D.J., Starr, J.E., Powell, J.A., Salupo, C.S. and Matus, L.G., IEEE Trans. Electron Devices, 41(5) 826 (1994).Google Scholar