Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T21:59:22.500Z Has data issue: false hasContentIssue false

Particle Irradiation Induced Defects in High Temperature Superconductors

Published online by Cambridge University Press:  26 February 2019

Prashanta Mani Niraula*
Affiliation:
Department of Physics, Western Michigan University, Kalamazoo, MI, United States.
Eiman Bokari
Affiliation:
Department of Physics, Western Michigan University, Kalamazoo, MI, United States.
Shahid Iqbal
Affiliation:
Department of Physics, Western Michigan University, Kalamazoo, MI, United States.
Lisa Paulius
Affiliation:
Department of Physics, Western Michigan University, Kalamazoo, MI, United States.
Matthew Smylie
Affiliation:
Argonne National Laboratory, Lemont, IL, United States.
Ulrich Welp
Affiliation:
Argonne National Laboratory, Lemont, IL, United States.
Wai-Kwong Kwok
Affiliation:
Argonne National Laboratory, Lemont, IL, United States.
Asghar Kayani
Affiliation:
Department of Physics, Western Michigan University, Kalamazoo, MI, United States.
Get access

Abstract

We use irradiation with 50-MeV Cu-ions to create vortex pinning defects in high-temperature superconducting Y1Ba2Cu3O7-x coated conductors using a beam-rastering approach that allows for the uniform irradiation of large ample areas. Our samples contain barium zirconate nanorods as pre-existing vortex pinning defects. By irradiating the samples at angles of 0o, 15oand 30o from the crystallographic c-axis we explore the interplay between pre-existing and irradiation-induced pinning and find that irradiation at 30o leads to a moderate enhancement of Jc at 5 K at high fields (greater than 2 Tesla). In contrast, Jc was suppressed for all temperatures and fields for other angles of irradiation. Optimized particle irradiation procedures offer a way for improving the performance of high-temperature superconducting wires for use in high magnetic fields without the need for changing wire synthesis protocols.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Senatore, C., Alessandrini, M., Lucarelli, A., Tediosi, R., Uglietti, D., and Iwasa, Y., Supercond. Sci. Technol. 27, 103001 (2014).CrossRefGoogle Scholar
Malozemoff, A.P., Annu. Rev. Mater. Res. 42, 373 (2012).CrossRefGoogle Scholar
MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., and Peterson, D.E., Nat. Mater. 3, 439 (2004).CrossRefGoogle Scholar
Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., Dowden, P.C., Holesinger, T.G., Foltyn, S.R., and Civale, L., Nat. Mater. 8, 398 (2009).CrossRefGoogle Scholar
Kwok, W.-K., Welp, U., Glatz, A., Koshelev, A.E., Kihlstrom, K.J., and Crabtree, G.W., Reports Prog. Phys. 79, 116501 (2016).CrossRefGoogle Scholar
Jia, Y., Leroux, M., Miller, D.J., Wen, J.G., Kwok, W.K., Welp, U., Rupich, M.W., Li, X., Sathyamurthy, S., Fleshler, S., Malozemoff, A.P., Kayani, A., Ayala-Valenzuela, O., and Civale, L., Appl. Phys. Lett. 103, (2013).Google Scholar
Leroux, M., Kihlstrom, K.J., Holleis, S., Rupich, M.W., Sathyamurthy, S., Fleshler, S., Sheng, H.P., Miller, D.J., Eley, S., Civale, L., Kayani, A., Niraula, P.M., Welp, U., and Kwok, W.-K., Appl. Phys. Lett. 107, 192601 (2015).CrossRefGoogle Scholar
EleyL.,S L.,S; Leroux, M ; Rupich, M W ; Miller, D J ; Sheng, H ; Niraula, P M ; Kayani, A ; Welp, U ; Kwok, W-K ; Civale, Supercond. Sci. Technol. 30, 015010 (2017).Google Scholar
Jäger, W. and Merkle, K.L., Philos. Mag. A 57, 479 (1988).CrossRefGoogle Scholar
Kirk, M.A., Cryogenics (Guildf). 33, 235 (1993).CrossRefGoogle Scholar
Kirk, M.A. and Yan, Y., Micron 30, 507 (1999).CrossRefGoogle Scholar
Zhu, Y., Cai, Z.X., Budhani, R.C., Suenaga, M., and Welch, D.O., Phys. Rev. B 48, 6436 (1993).CrossRefGoogle Scholar
Yan, Y. and Kirk, M.A., Phys. Rev. B 57, 6152 (1998).CrossRefGoogle Scholar
Kwon, J.-H., Meng, Y., Wu, L., Zhu, Y., Zhang, Y., Selvamanickam, V., Welp, U., Kwok, W.-K., and Zuo, J.-M., Supercond. Sci. Technol. 31, 105006 (2018).CrossRefGoogle Scholar
Koshelev, A.E., Sadovskyy, I.A., Phillips, C.L., and Glatz, A., Phys. Rev. B 93, (2016).CrossRefGoogle Scholar
Sadovskyy, I.A., Jia, Y., Leroux, M., Kwon, J., Hu, H., Fang, L., Chaparro, C., Zhu, S., Welp, U., Zuo, J.-M., and others, Adv. Mater. 28, 4593 (2016).CrossRefGoogle Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P., Nucl. Inst. Methods Phys. Res. B 268, 1818 (2010).CrossRefGoogle Scholar
Bean, C.P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
Ortalan, V., Herrera, M., Rupich, M.W., and Browning, N.D., Phys. C Supercond. 469, 2052 (2009).CrossRefGoogle Scholar