Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T20:22:35.387Z Has data issue: false hasContentIssue false

Photoluminescence Properties in Aliphatic-Aromatic Biodegradable Polymers Induced by Low Energy Radiation

Published online by Cambridge University Press:  25 January 2019

Elisete L. Cunha
Affiliation:
Depto. Engenharia Nuclear – UFMG, Av. Antônio Carlos, 6627, CEP31270-970, Belo Horizonte, MG, Brazil
T. Schimitberger
Affiliation:
Depto. Engenharia Nuclear – UFMG, Av. Antônio Carlos, 6627, CEP31270-970, Belo Horizonte, MG, Brazil
Victor A. Rosas
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, CEP31270-901, Belo Horizonte-MG, Brazil
João L. A. Sousa
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, CEP31270-901, Belo Horizonte-MG, Brazil
Luiz O. Faria*
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, CEP31270-901, Belo Horizonte-MG, Brazil
*
*(Email: farialo@cdtn.br)
Get access

Abstract

Pristine poly(butylene adipate-co-terephthalate) (PBAT) is a biodegradable aliphatic-aromatic copolyester that shows no photoluminescent features. The radio induction of photoluminescence (PL) properties in PBAT, after exposure to high doses of gamma radiation, was firstly reported in 2014. These new PL properties have great potential for applications at “in vitro” imaging of human cancer, bio-imaging devices and radiation dosimetry. In this paper, we report the radio induction of photoluminescence (PL) properties in PBAT, after exposure to low energy UV irradiation. In this investigation, films of PBAT, produced by the wire-bar coating technique, were exposed to UV radiation for periods of time ranging from 50 to 500 hours. The PL emission analysis revealed that UV irradiation performed under O2 rich air atmosphere enhances the PL output when compared to irradiations performed in the air. FTIR data confirm that the mechanism behind the UV photo-induction of PL features are similar to the mechanism suggested for gamma radio-induction PL emission. The PL intensity x Spectral Irradiance relationship and RGB color components, the green (G) and blue (B) components, can be used to perform 2D UV dosimetry. The high quantum yield emission of UV-induced PL near 500 nm observed in PBAT is a very interesting finding because it involves the development of a new cheap biodegradable photoluminescent polymer that finds application in drug delivery, bio-imaging devices and also in 2D dosimetry.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, W., Hao, X., Chen, S., Yang, Z., Wang, C., Yan, R., Zhang, X., Liu, H., Shao, Q., Guo, Z., Polymer 158, 223 (2018).CrossRefGoogle Scholar
Lu, Y, Biswas, M. C., Guo, Z., Jeon, J. W., Wujcik, E. K., Biosens Bioelectron, 1 (123), 167-177 (2019).CrossRefGoogle Scholar
Gu, H., Zhang, H., Lin, J., Shao, Q., Young, D. P., Sun, L., Shen, T.D., Guo, Z., Polymer, 143, 324 (2018).CrossRefGoogle Scholar
Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., Guo, Z., Carbon, 140, 696 (2018).CrossRefGoogle ScholarPubMed
Viegas, J., Silva, L. S., Batista, A. M. S., Furtado, C. A., Nascimento, J. P., Faria, L. O., Ind. & Eng. Chem. Research, 56 (41), 11782-11791 (2017).CrossRefGoogle Scholar
Jian, Y., , Z.Y., Santosh, G., Li, L., Jagannath, D., Wei, C., Mason, R. P., Serrano, C. A., Schuge, K. A. and Tanga, L., PNAS 106 (25), 10086-10091 (2009).Google Scholar
Tran, R. T., Zhang, Y., Gyawali, D. and Yang, J., Recent Patents on Biomed. Eng. 2, 216 (2009).CrossRefGoogle Scholar
Fukushima, K., Rasyida, A., Yang, M.Y., App. Clay Sci. 80–81, 291 (2013).CrossRefGoogle Scholar
Schimitberger, T., Bianchi, R.F., Curti, P.S., Faria, L.O., IEEE Trans. Nucl. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., Dai, K., Shan, C., Guo, J., Liu, C., Shen, C., Wang, X., Wang, N., Wang, Z., Wei, R., Guo, Z., J. Mater. Chem. C 6, 12121 (2018).CrossRefGoogle Scholar
Schimitberger, T., Lopes, F. A., Franco, M. R., Santos, A. E. G., Curti, P. S., Bianchi, R. F., Faria, L. O., International Journal of Microwave and Wireless Technologies 1576, 7 (2013).Google Scholar
Schnabel, W., Polymer Degradation: Principles and Practical Applications, (Hanser, New York, 1992).Google Scholar
Albertsson, A.C., Biodegradation of Polymers, Edited by Hamid, S.H., Amin, M.B., Maadhah, A.G. (Handbook of Polymer Degradation, New York: Marcel Dekker, 1992) p. 345.Google Scholar