Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T03:03:46.596Z Has data issue: false hasContentIssue false

Photoluminescence Studies of Mid-infrared InAs/AlAs Quantum Dot Cascade Laser Structures

Published online by Cambridge University Press:  10 April 2017

Elif Demirbas*
Affiliation:
Physics and Applied Physics, University of Massachusetts, Lowell, MA, 01854, U.S.A.
Xifeng Qian
Affiliation:
Physics and Applied Physics, University of Massachusetts, Lowell, MA, 01854, U.S.A.
Get access

Abstract

We present the optical characterization of quantum dot cascade laser (QDCL) structures using photoluminescence. In this work, two InAs/AlAs quantum dot structures are investigated with different GaAs QW thicknesses. Low temperature photoluminescence measurements show peaks at 1.03 eV, 1.28 eV, and 1.51 eV for QDCL1, and 1.07 eV, 1.27 eV, and 1.47 eV for sample QDCL2, corresponding to ee-hh transition in both QD and QW. A three dimensional QD-QW model in Nextnano is developed to simulate the energy states, wave functions, and transition rates between conduction and valence bands using a typical QD size obtained from atomic force microscope measurements. The simulation results agree well with the experimental data. This allows us not only to understand the optical characteristics of the QD-QW structure, but also to optimize the QDCL structure design.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho, A. Y., Science 264, 553 (1994).CrossRefGoogle Scholar
Slivken, S., Evans, A., Zhang, W., and Razeghi, M., Appl. Phys. Lett. 90, 151115 (2007).Google Scholar
Razeghi, M., Slivken, S., Bai, Y., Gokden, B., and Darvish, S. R., New J. Phys. 11, 125017 (2009).Google Scholar
Walther, C., Fischer, M., Scalari, G., Terazzi, R., Hoyler, N., and Faist, J., Appl. Phys. Lett. 91, 131122 (2007).Google Scholar
Lee, A. W. M., Qin, Q., Kumar, S., Williams, B. S., Hu, Q., and Reno, J. L., Appl. Phys. Lett. 89, 141125 (2006).Google Scholar
Wingreen, N. S., and Stafford, C. A., IEEE J. Quantum Electron. 33, 1170 (1997).Google Scholar
Michael, S., Chow, W. W., Schneider, H. C., Proc. SPIE 9767, Novel In-Plane Semiconductor Lasers XV, 97671E (2016).Google Scholar
Wasserman, D., Ribaudo, T., Lyon, S. A., Lyo, S. K., and Shaner, E. A., Appl. Phys. Lett. 94, 061101 (2009).CrossRefGoogle Scholar
Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P., IEEE Trans. Electron Devices 54(9), 2137 (2007).Google Scholar
Birner, S., Ph.D. thesis, Technical University Muenchen, Germany (2011).Google Scholar
Perinetti, U., Ph.D. thesis, Delft University of Technology, Netherlands (2011).Google Scholar
Pal, D., Stoleru, V. G., Towe, E., Firsov, D., Jpn. J. Appl. Phys. 41, 482 (2002).Google Scholar