Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T20:44:43.681Z Has data issue: false hasContentIssue false

Photonics of Sub-Wavelength Nanowire Superlattices

Published online by Cambridge University Press:  12 September 2019

Seokhyoung Kim*
Affiliation:
Department of Chemistry, Northwestern University, Evanston, Illinois60208, U.S.A.
Get access

Abstract

Semiconductor nanowires (NWs) have widely been studied as an ideal platform for developing electronic, photovoltaic, photonic devices and biological probes in the nanoscale. The ability to synthesize high-quality NWs of various materials with a precise control in shape, doping and crystal structure is the key to the growth of NW-based technologies. In the past decade, there has been growing interest in controllably creating NW heterojunctions and periodically-modulated superlattices (SLs) because it is expected to bring new functionalities that are not present in uniform NWs. In particular, the interaction of NW SLs with light has been one of the central interests because the diameter and modulation length scale are on the same order as the wavelength of light in the optical regime. Also, degenerately-doped semiconductor NWs exhibit localized surface plasmon resonances (LSPRs), which comprises unexpected long-range interactions when the plasmon resonators are regularly placed in NW SLs. In this review, I will summarize the recent progress in photonics research of NW SLs. The topics discussed include preparation and types of NW SLs, light-trapping and light-emission properties, and plasmonic optical- and thermal-transport properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4 (5), 89-90 (1964).CrossRefGoogle Scholar
Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. and Lieber, C. M., Nature 415, 617 (2002).CrossRefGoogle Scholar
Yan, R., Gargas, D. and Yang, P., Nat. Photonics 3 (10), 569-576 (2009).CrossRefGoogle Scholar
Kempa, T. J., Day, R. W., Kim, S.-K., Park, H.-G. and Lieber, C. M., Energy Environ. Sci. 6 (3), 719-733 (2013).CrossRefGoogle Scholar
Parameswaran, R. and Tian, B., Acc. Chem. Res. 51 (5), 1014-1022 (2018).CrossRefGoogle Scholar
Björk, M. T., Ohlsson, B. J., Sass, T., Persson, A. I., Thelander, C., Magnusson, M. H., Deppert, K., Wallenberg, L. R. and Samuelson, L., Nano Lett. 2 (2), 87-89 (2002).CrossRefGoogle Scholar
Güniat, L., Caroff, P. and Fontcuberta i Morral, A., Chem. Rev. 119 (15), 8958-8971 (2019).CrossRefGoogle Scholar
Christesen, J. D., Pinion, C. W., Grumstrup, E. M., Papanikolas, J. M. and Cahoon, J. F., Nano Lett. 13 (12), 6281-6286 (2013).CrossRefGoogle Scholar
Christesen, J. D., Pinion, C. W., Hill, D. J., Kim, S. and Cahoon, J. F., J. Phys. Chem. Lett. 7 (4), 685-692 (2016).CrossRefGoogle Scholar
Musin, I. R., Shin, N. and Filler, M. A., J. Mater. Chem. C 2 (17), 3285-3291 (2014).CrossRefGoogle Scholar
Chou, L.-W., Boyuk, D. S. and Filler, M. A., ACS Nano 9 (2), 1250-1256 (2015).CrossRefGoogle Scholar
Chiang, C.-K., Chung, Y.-C., Cheng, P.-J., Wu, C.-W., Chang, S.-W. and Lin, T.-R., High Q/Vm hybrid photonic-plasmonic crystal nanowire cavity at telecommunication wavelengths. (SPIE, 2015).Google Scholar
Algra, R. E., Verheijen, M. A., Borgstrom, M. T., Feiner, L. F., Immink, G., van Enckevort, W. J., Vlieg, E. and Bakkers, E. P., Nature 456 (7220), 369-372 (2008).CrossRefGoogle Scholar
Burgess, T., Breuer, S., Caroff, P., Wong-Leung, J., Gao, Q., Hoe Tan, H. and Jagadish, C., ACS Nano 7 (9), 8105-8114 (2013).CrossRefGoogle Scholar
Assali, S., Lähnemann, J., Vu, T. T. T., Jöns, K. D., Gagliano, L., Verheijen, M. A., Akopian, N., Bakkers, E. P. A. M. and Haverkort, J. E. M., Nano Lett. 17 (10), 6062-6068 (2017).CrossRefGoogle Scholar
Scarpellini, D., Somaschini, C., Fedorov, A., Bietti, S., Frigeri, C., Grillo, V., Esposito, L., Salvalaglio, M., Marzegalli, A., Montalenti, F., Bonera, E., Medaglia, P. G. and Sanguinetti, S., Nano Lett. 15 (6), 3677-3683 (2015).CrossRefGoogle Scholar
Ren, D., Ahtapodov, L., Nilsen, J. S., Yang, J., Gustafsson, A., Huh, J., Conibeer, G. J., van Helvoort, A. T. J., Fimland, B.-O. and Weman, H., Nano Lett. 18 (4), 2304-2310 (2018).CrossRefGoogle Scholar
Zhang, G., Takiguchi, M., Tateno, K., Tawara, T., Notomi, M. and Gotoh, H., Sci. Adv. 5 (2), eaat8896 (2019).CrossRefGoogle Scholar
Kempa, T. J., Cahoon, J. F., Kim, S.-K., Day, R. W., Bell, D. C., Park, H.-G. and Lieber, C. M., Proc. Natl. Acad. Sci. 109 (5), 1407-1412 (2012).CrossRefGoogle Scholar
Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J. and Lieber, C. M., Nature 449 (7164), 885-889 (2007).CrossRefGoogle Scholar
Caroff, P., Dick, K. A., Johansson, J., Messing, M. E., Deppert, K. and Samuelson, L., Nat. Nanotechnol. 4 (1), 50-55 (2009).CrossRefGoogle Scholar
Dick, K. A., Thelander, C., Samuelson, L. and Caroff, P., Nano Lett. 10 (9), 3494-3499 (2010).CrossRefGoogle Scholar
Kim, S., Hill, D. J., Pinion, C. W., Christesen, J. D., McBride, J. R. and Cahoon, J. F., ACS Nano 11 (5), 4453-4462 (2017).CrossRefGoogle Scholar
Hill, D. J., Teitsworth, T. S., Kim, S., Christesen, J. D. and Cahoon, J. F., ACS Appl. Mater. Interfaces 9 (42), 37105-37111 (2017).CrossRefGoogle Scholar
Dou, L., Lai, M., Kley, C. S., Yang, Y., Bischak, C. G., Zhang, D., Eaton, S. W., Ginsberg, N. S. and Yang, P., Proc. Natl. Acad. Sci. U.S.A. 114 (28), 7216-7221 (2017).CrossRefGoogle Scholar
Luo, Z., Jiang, Y., Myers, B. D., Isheim, D., Wu, J., Zimmerman, J. F., Wang, Z., Li, Q., Wang, Y., Chen, X., Dravid, V. P., Seidman, D. N. and Tian, B., Science 348 (6242), 1451-1455 (2015).CrossRefGoogle Scholar
Day, R. W., Mankin, M. N., Gao, R., No, Y.-S., Kim, S.-K., Bell, D. C., Park, H.-G. and Lieber, C. M., Nat. Nanotechnol. 10 (4), 345-352 (2015).CrossRefGoogle Scholar
Fan, S. and Joannopoulos, J. D., Phys. Rev. B 65 (23), 235112 (2002).CrossRefGoogle Scholar
Kim, S., Kim, K.-H., Hill, D. J., Park, H.-G. and Cahoon, J. F., Nat. Commun. 9 (1), 2781 (2018).CrossRefGoogle Scholar
Kim, S., Kim, K.-H. and Cahoon, J. F., Phys. Rev. Lett. 122 (18), 187402 (2019).CrossRefGoogle Scholar
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. and Soljačić, M., Nat. Rev. Mater. 1, 16048 (2016).CrossRefGoogle Scholar
Bulgakov, E. N. and Sadreev, A. F., Phys. Rev. A 96 (1), 013841 (2017).CrossRefGoogle Scholar
Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T. and Giessen, H., Nat. Mater. 8, 758 (2009).CrossRefGoogle Scholar
Lee, H.-C., Na, J.-Y., Moon, Y.-J., Park, J.-S., Ee, H.-S., Park, H.-G. and Kim, S.-K., Opt. Lett. 41 (7), 1578-1581 (2016).CrossRefGoogle Scholar
Choi, J. S., Kim, K.-H. and No, Y.-S., Opt. Express. 25 (19), 22750-22759 (2017).CrossRefGoogle Scholar
Ha, S.-T., Su, R., Xing, J., Zhang, Q. and Xiong, Q., Chem. Sci. 8 (4), 2522-2536 (2017).CrossRefGoogle Scholar
Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., Gustafsson, M. V., Trinh, M. T., Jin, S. and Zhu, X. Y., Nat. Mater. 14, 636 (2015).CrossRefGoogle Scholar
Halas, N. J., Lal, S., Chang, W.-S., Link, S. and Nordlander, P., Chem. Rev. 111 (6), 3913-3961 (2011).CrossRefGoogle Scholar
Chen, G., Roy, I., Yang, C. and Prasad, P. N., Chem. Rev. 116 (5), 2826-2885 (2016).CrossRefGoogle Scholar
Luther, J. M., Jain, P. K., Ewers, T. and Alivisatos, A. P., Nat. Mater. 10, 361 (2011).CrossRefGoogle Scholar
Chou, L. W. and Filler, M. A., Angew. Chem. Int. Ed. Engl. 52 (31), 8079-8083 (2013).CrossRefGoogle Scholar
Boyuk, D. S., Chou, L. W. and Filler, M. A., ACS Photonics 3 (2), 184-189 (2016).CrossRefGoogle Scholar
Tervo, E. J., Boyuk, D. S., Cola, B. A., Zhang, Z. M. and Filler, M. A., Nanoscale 10 (12), 5708-5716 (2018).CrossRefGoogle Scholar
Tervo, E. J., Gustafson, M. E., Zhang, Z. M., Cola, B. A. and Filler, M. A., Appl. Phys. Lett. 114 (16), 163104 (2019).CrossRefGoogle Scholar